IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v146y2021ics0960077920310201.html
   My bibliography  Save this article

Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models

Author

Listed:
  • Seadawy, Aly R.
  • Ali, Asghar
  • Althobaiti, Saad
  • Sayed, Samy

Abstract

Manuscript purpose is to find analytical solutions of the (2 + 1)-dimensional Heisenberg Ferromagnetic Spin Chain and Vakhnenko dynamical equations by using the generalized direct algebraic and simple equation analytical methods. Numerous exact traveling results are obtained in exponential, trigonometric and hyperbolic wave solutions. To understand the physical behavior of the models, the two and three dimensions graphs along with contour are plotted after assigning the particular values to the parameters. Obtained structures provide a rich platform for solving nonlinear wave problems with many applications.

Suggested Citation

  • Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077920310201
    DOI: 10.1016/j.chaos.2020.110629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920310201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    2. Chen, Yong & Yan, Zhenya, 2006. "The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 948-964.
    3. Abdou, M.A., 2007. "The extended F-expansion method and its application for a class of nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 95-104.
    4. Helal, M.A. & Seadawy, A.R. & Zekry, M.H., 2014. "Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1094-1103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Ganaini, Shoukry & Kumar, Sachin, 2023. "Symbolic computation to construct new soliton solutions and dynamical behaviors of various wave structures for two different extended and generalized nonlinear Schrödinger equations using the new impr," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 28-56.
    2. Nur Alam & Fethi Bin Muhammad Belgacem, 2016. "Microtubules Nonlinear Models Dynamics Investigations through the exp(−Φ(ξ))-Expansion Method Implementation," Mathematics, MDPI, vol. 4(1), pages 1-13, February.
    3. Feiyun Pei & Guojiang Wu & Yong Guo, 2023. "Construction of Infinite Series Exact Solitary Wave Solution of the KPI Equation via an Auxiliary Equation Method," Mathematics, MDPI, vol. 11(6), pages 1-25, March.
    4. Akbulut, Arzu & Taşcan, Filiz, 2017. "Application of conservation theorem and modified extended tanh-function method to (1+1)-dimensional nonlinear coupled Klein–Gordon–Zakharov equation," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 33-40.
    5. Wafaa B. Rabie & Hamdy M. Ahmed & Walid Hamdy, 2023. "Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method," Mathematics, MDPI, vol. 11(2), pages 1-28, January.
    6. Muhammad Shakeel & Attaullah & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Wajaree Weera, 2022. "Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
    7. Jang, Bongsoo, 2009. "New exact travelling wave solutions of nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 646-654.
    8. Akram, Urooj & Althobaiti, Ali & Althobaiti, Saad & Alhushaybari, Abdullah, 2023. "Chirped pulses for Nematicons in liquid crystals with cubic-septic law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Kumar, Sachin & Kumar, Amit, 2022. "Dynamical behaviors and abundant optical soliton solutions of the cold bosonic atoms in a zig-zag optical lattice model using two integral schemes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 254-274.
    10. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    11. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    12. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.
    13. Han, Tianyong & Li, Zhao & Li, Chenyu, 2023. "Bifurcation analysis, stationary optical solitons and exact solutions for generalized nonlinear Schrödinger equation with nonlinear chromatic dispersion and quintuple power-law of refractive index in ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    14. Aljohani, A.F. & Alqurashi, Bader Mutair & Kara, A.H., 2021. "Solitons, travelling waves, invariance, conservation laws and ‘approximate’ conservation of the extended Jimbo-Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    15. Bo Xu & Sheng Zhang, 2022. "Analytical Method for Generalized Nonlinear Schrödinger Equation with Time-Varying Coefficients: Lax Representation, Riemann-Hilbert Problem Solutions," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    16. Verma, Pallavi & Kaur, Lakhveer, 2019. "Integrability, bilinearization and analytic study of new form of (3+1)-dimensional B-type Kadomstev–Petviashvili (BKP)- Boussinesq equation," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 879-886.
    17. Kumar, Sachin & Kumar, Dharmendra & Kumar, Amit, 2021. "Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Ullah, Mohammad Safi & Baleanu, Dumitru & Ali, M. Zulfikar & Harun-Or-Roshid,, 2023. "Novel dynamics of the Zoomeron model via different analytical methods," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Khaled A. Gepreel, 2020. "Analytical Methods for Nonlinear Evolution Equations in Mathematical Physics," Mathematics, MDPI, vol. 8(12), pages 1-14, December.
    20. Arzu Akbulut & Melike Kaplan & Rubayyi T. Alqahtani & W. Eltayeb Ahmed, 2023. "On the Dynamics of the Complex Hirota-Dynamical Model," Mathematics, MDPI, vol. 11(23), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:146:y:2021:i:c:s0960077920310201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.