IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v145y2021ics0960077921001703.html
   My bibliography  Save this article

Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory

Author

Listed:
  • Parit, Aditya Kuber
  • Yadav, Mani Shankar
  • Gupta, Avinash Kumar
  • Mikhaylov, Alexey
  • Rawat, Brajesh

Abstract

Memristor-based crossbar architecture has emerged as a promising candidate for 3-D memory, logic, and neuromorphic computing system as it offers remarkably high integration density, low power consumption, fast operation, and easy integration with CMOS technology. However, the fundamental obstacle for their development is the sneak current, which causes misreading and write-crosstalk. In this regard, we present the TiN/NbO2/TiN/TaOx/TiN based self-selective memristor by combining the threshold switching properties of niobium oxide (NbO2) and memory switching properties of tantalum oxide (TaOx) in a single device. The performance investigation is carried out using the finite element simulation method, based on self-consistent solutions of joule heating equation, drift-diffusion continuity equation, and current continuity for accurately capturing the temperature and field-dependent transport of vacancies. The results reveal that NbO2-TaOx based self-selective memristor can allow significantly lower OFF current (1.22 μA), higher read window (32.6), and higher non-linearity (141) than that of TiN/TaOx/TiN based memristor. We demonstrate that the self-selective memristor exhibits good speed with the operation time constant of 70 ns. Furthermore, the crossbar array using a self-selective memristor has shown excellent performance with an improved readout margin up to 27 word lines. Our material-to-circuit performance analysis promises a reliable and energy-efficient crossbar array using NbO2-TaOx cell that can be further utilized for implementing 3-D cross-bar array.

Suggested Citation

  • Parit, Aditya Kuber & Yadav, Mani Shankar & Gupta, Avinash Kumar & Mikhaylov, Alexey & Rawat, Brajesh, 2021. "Design and modeling of niobium oxide-tantalum oxide based self-selective memristor for large-scale crossbar memory," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001703
    DOI: 10.1016/j.chaos.2021.110818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921001703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.110818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. Irem Boybat & Manuel Le Gallo & S. R. Nandakumar & Timoleon Moraitis & Thomas Parnell & Tomas Tuma & Bipin Rajendran & Yusuf Leblebici & Abu Sebastian & Evangelos Eleftheriou, 2018. "Neuromorphic computing with multi-memristive synapses," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Guseinov, D.V. & Matyushkin, I.V. & Chernyaev, N.V. & Mikhaylov, A.N. & Pershin, Y.V., 2021. "Capacitive effects can make memristors chaotic," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Mikhaylov, A.N. & Guseinov, D.V. & Belov, A.I. & Korolev, D.S. & Shishmakova, V.A. & Koryazhkina, M.N. & Filatov, D.O. & Gorshkov, O.N. & Maldonado, D. & Alonso, F.J. & Roldán, J.B. & Krichigin, A.V. , 2021. "Stochastic resonance in a metal-oxide memristive device," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xing & Zou, Jianxun & Feng, Zhe & Wu, Zuheng & Xu, Zuyu & Yang, Fei & Zhu, Yunlai & Dai, Yuehua, 2023. "Thermal design engineering for improving the variation of memristor threshold," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Park, Jinwoo & Kim, Tae-Hyeon & Kim, Sungjoon & Lee, Geun Ho & Nili, Hussein & Kim, Hyungjin, 2021. "Conduction mechanism effect on physical unclonable function using Al2O3/TiOX memristors," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Parshina, Liubov & Novodvorsky, Oleg & Khramova, Olga & Gusev, Dmitriy & Polyakov, Alexander & Cherebilo, Elena, 2022. "Tuning the resistive switching in tantalum oxide-based memristors by oxygen pressure during low temperature laser synthesis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Agudov, N.V. & Dubkov, A.A. & Safonov, A.V. & Krichigin, A.V. & Kharcheva, A.A. & Guseinov, D.V. & Koryazhkina, M.N. & Novikov, A.S. & Shishmakova, V.A. & Antonov, I.N. & Carollo, A. & Spagnolo, B., 2021. "Stochastic model of memristor based on the length of conductive region," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Chen, Ruyin & Xiong, Yue & Zhuge, Shengying & Li, Zekun & Chen, Qitie & He, Zhifen & Wu, Dingqiang & Hou, Fang & Zhou, Jiawei, 2023. "Regulation and prediction of multistable perception alternation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    7. Huang, Lilian & Liu, Jin & Xiang, Jianhong & Zhang, Zefeng & Du, Xiuli, 2022. "A construction method of N-dimensional non-degenerate discrete memristive hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Ping, Zhu, 2023. "Analytical equivalent transformation method for nonlinear stochastic dynamics with multiple noises in high dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    12. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    14. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    15. Setoudeh, Farbod & Dezhdar, Mohammad Matin & Najafi, M., 2022. "Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    17. Jin, Yanfei & Wang, Haotian & Xu, Pengfei, 2023. "Noise-induced enhancement of stability and resonance in a tri-stable system with time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    18. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    19. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    20. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:145:y:2021:i:c:s0960077921001703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.