IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v107y2018icp170-176.html
   My bibliography  Save this article

Inferring infection rate based on observations in complex networks

Author

Listed:
  • Su, Zhen
  • Liu, Fanzhen
  • Gao, Chao
  • Gao, Shupeng
  • Li, Xianghua

Abstract

The infection rate of a propagation model is an important factor for characterizing a dynamic diffusion process accurately, which determines the scale and speed of a diffusion. Inferring an infection rate, based on an observed propagation phenomenon, can help us better estimate the threat of a diffusion in advance and deploy corresponding strategies to restrain such diffusion. Meanwhile, the infection rate is a vital and predefined parameter in the field of propagation network reconstruction and propagation source identification. Therefore, how to infer an infection rate effectively from observed diffusion data is of great significance. In this paper, a backpropagation-based maximum likelihood estimation (BP-ML) is used to infer such infection rate. More specifically, a set of sensors are first deployed into a network for collecting diffusion data (i.e., the infection time of a node). Then, a series of backpropagations are initiated by nodes resided by these sensors in order to deduce the more probable infection rate based on the maximum likelihood estimation. Some experiments in real-world networks show that by taking full advantage of observed diffusion data, our proposed method can infer the infection rate of a diffusion accurately.

Suggested Citation

  • Su, Zhen & Liu, Fanzhen & Gao, Chao & Gao, Shupeng & Li, Xianghua, 2018. "Inferring infection rate based on observations in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 170-176.
  • Handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:170-176
    DOI: 10.1016/j.chaos.2017.12.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    2. Chao Gao & Zhen Wang & Xianghua Li & Zili Zhang & Wei Zeng, 2016. "PR-Index: Using the h-Index and PageRank for Determining True Impact," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-13, September.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Zareie, Ahmad & Sheikhahmadi, Amir & Fatemi, Adel, 2017. "Influential nodes ranking in complex networks: An entropy-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 485-494.
    5. Li, Xianghua & Wang, Zhen & Gao, Chao & Shi, Lei, 2017. "Reasoning human emotional responses from large-scale social and public media," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 182-193.
    6. Li, Xianghua & Guo, Jingyi & Gao, Chao & Zhang, Leyan & Zhang, Zili, 2018. "A hybrid strategy for network immunization," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 214-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Le & Li, Xianghua & Han, Zhen & Luo, Tengyun & Ma, Lianbo & Zhu, Peican, 2022. "Path-based multi-sources localization in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xianghua & Guo, Jingyi & Gao, Chao & Zhang, Leyan & Zhang, Zili, 2018. "A hybrid strategy for network immunization," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 214-219.
    2. Li, Hanwen & Shang, Qiuyan & Deng, Yong, 2021. "A generalized gravity model for influential spreaders identification in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    4. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    5. Li, Hui-Jia & Bu, Zhan & Li, Yulong & Zhang, Zhongyuan & Chu, Yanchang & Li, Guijun & Cao, Jie, 2018. "Evolving the attribute flow for dynamical clustering in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 20-27.
    6. Gao, Bo & Liu, Xuan & Lan, Zhongzhou & Fu, Rongrong, 2018. "A novel method for reconstructing period with single input in NFSR," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 36-40.
    7. Shen, Dongqin & Cao, Shanshan, 2018. "An efficient immunization strategy based on transmission limit in weighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 1-7.
    8. Li, Xianghua & Guo, Jingyi & Gao, Chao & Su, Zhen & Bao, Deng & Zhang, Zili, 2018. "Network-based transportation system analysis: A case study in a mountain city," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 256-265.
    9. Zhang, Jun & Hu, Bin & Huang, Yi Jie & Deng, Zheng Hong & Wu, Tao, 2020. "The evolution of cooperation affected by aspiration-driven updating rule in multi-games with voluntary participation," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Wang, Yan & Li, Haozhan & Zhang, Ling & Zhao, Linlin & Li, Wanlan, 2022. "Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    11. Zhao, Dawei & Wang, Lianhai & Xu, Shujiang & Liu, Guangqi & Han, Xiaohui & Li, Shudong, 2017. "Vital layer nodes of multiplex networks for immunization and attack," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 169-175.
    12. Ren, Baoan & Zhang, Yu & Chen, Jing & Shen, Lincheng, 2019. "Efficient network disruption under imperfect information: The sharpening effect of network reconstruction with no prior knowledge," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 196-207.
    13. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    14. Zhang, Wen-Yao & Wei, Zong-Wen & Wang, Bing-Hong & Han, Xiao-Pu, 2016. "Measuring mixing patterns in complex networks by Spearman rank correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 440-450.
    15. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    17. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    19. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:170-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.