IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v107y2018icp143-145.html
   My bibliography  Save this article

Collisions between the dark solitons for a nonlinear system in the geophysical fluid

Author

Listed:
  • Xie, Xi-Yang
  • Meng, Gao-Qing

Abstract

Under investigation in this paper is a nonlinear system, which can be used to describe the marginally unstable baroclinic wave packets in the geophysical fluid. With the help of this nonlinear system, we study the properties of the dark solitons in the geophysical fluid. With the symbolic computation, dark one- and two-soliton solutions for such a system are obtained. Propagations of the one solitons and collisions between the two solitons are graphically shown and discussed with the parameters α and γ, where α measures the state of the basic flow and γ is the group velocity. γ is observed to affect the amplitudes of the dark one and two solitons, i.e., amplitudes of the solitons become higher with the value of γ increasing, and travelling directions of the two solitons can be influenced by γ. α is observed to affect the plane of B, but have no effect on A, where A represents the amplitude of the wave packet, and B is a quantity measuring the correction of the basic flow.

Suggested Citation

  • Xie, Xi-Yang & Meng, Gao-Qing, 2018. "Collisions between the dark solitons for a nonlinear system in the geophysical fluid," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 143-145.
  • Handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:143-145
    DOI: 10.1016/j.chaos.2017.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305179
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei-Qin Chen & Qing-Feng Guan & Chao-Fan Jiang & Fei-Fan Zhang & Lei Wang, 2019. "Nonautonomous Motion Study on Accelerated and Decelerated Lump Waves for a (3 + 1)-Dimensional Generalized Shallow Water Wave Equation with Variable Coefficients," Complexity, Hindawi, vol. 2019, pages 1-8, November.
    2. Akram, Urooj & Althobaiti, Ali & Althobaiti, Saad & Alhushaybari, Abdullah, 2023. "Chirped pulses for Nematicons in liquid crystals with cubic-septic law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:107:y:2018:i:c:p:143-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.