IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v444y2023ics0096300322008815.html
   My bibliography  Save this article

Outlier-resistant interval observer design for multirate time-delayed systems under the adaptive event-triggered protocols

Author

Listed:
  • Li, Xin
  • Cheng, Kaijie
  • Zhu, Liangkuan
  • Wei, Guoliang

Abstract

In this paper, an interval observer has been presented for a type of multirate time-delayed systems subject to measurement outliers under the adaptive event-triggered protocol (AETP). First of all, the multirate sampling system is studied to meet the practical requirements. Meanwhile, for relieving the communication burden, an AETP is considered to schedule the measurement information received by the observer. The augmented system is built at a consistent sampling/update rate by using the lifting technique. Moreover, the occurrence of measurement outliers would pose some serious threats to the reliability of the systems. For the addressed issue, an outlier-resistant interval observer is developed by means of saturation function to weaken the impact of the measurement outliers. A sufficient condition is proposed by using the positive system theory and Lyapunov stability theory to ensure that the interval observer is effective and the error system is input-to-state stable. Besides, the gain matrices of the interval observer are obtained by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed interval observer is verified by a numerical simulation.

Suggested Citation

  • Li, Xin & Cheng, Kaijie & Zhu, Liangkuan & Wei, Guoliang, 2023. "Outlier-resistant interval observer design for multirate time-delayed systems under the adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 444(C).
  • Handle: RePEc:eee:apmaco:v:444:y:2023:i:c:s0096300322008815
    DOI: 10.1016/j.amc.2022.127813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322008815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tu & Li, Liwei & Shen, Mouquan, 2021. "Interval observer-based finite-time control for linear parameter-varying systems," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    2. Li, Xin & Wei, Guoliang & Ding, Derui, 2021. "Distributed resilient interval estimation for sensor networks under aperiodic denial-of-service attacks and adaptive event-triggered protocols," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Song, Jia-Sheng & Chang, Xiao-Heng, 2020. "H∞ controller design of networked control systems with a new quantization structure," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    4. Zou, Cong & Li, Bing & Liu, Feiyang & Xu, Bingrui, 2022. "Event-Triggered μ-state estimation for Markovian jumping neural networks with mixed time-delays," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Ma, Yan & Zhang, Zhenzhen & Yang, Li & Chen, Hao & Zhang, Yihao, 2022. "A resilient optimized dynamic event-triggered mechanism on networked control system with switching behavior under mixed attacks," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Fu, Haijing & Li, Jiahui & Han, Fei & Hou, Nan & Dong, Hongli, 2021. "Outlier-resistant bserver-based H∞ PID control under stochastic communication protocol," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijayakumar, M. & Sakthivel, R. & Mohammadzadeh, Ardashir & Karthick, S.A. & Marshal Anthoni, S., 2021. "Proportional integral observer based tracking control design for Markov jump systems," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Suriguga, & Kao, Yonggui & Shao, Chuntao & Chen, Xiangyong, 2021. "Stability of high-order delayed Markovian jumping reaction-diffusion HNNs with uncertain transition rates," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    3. Zhang, Huasheng & Zhuang, Guangming & Sun, Wei & Li, Yongmin & Lu, Junwei, 2020. "pth moment asymptotic interval stability and stabilization of linear stochastic systems via generalized H-representation," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    4. Rajchakit, G. & Sriraman, R. & Vignesh, P. & Lim, C.P., 2021. "Impulsive effects on Clifford-valued neural networks with time-varying delays: An asymptotic stability analysis," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    5. Hu, Yue & Cai, Chenxiao & Lee, SeungHoon & Lee, YongGwon & Kwon, Oh-Min, 2023. "New results on H∞ control for interval type-2 fuzzy singularly perturbed systems with fading channel: The weighted try-once-discard protocol case," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    6. Liu, Cheng-Qian & Li, Xiao-Jian & Long, Yue & Sun, Jie, 2020. "Output feedback secure control for cyber-physical systems against sparse sensor attacks," Applied Mathematics and Computation, Elsevier, vol. 384(C).
    7. Li, Yuanen & Zhang, Huasheng & Zhang, Tingting & Geng, Han, 2023. "Interval stability/stabilization and H∞ feedback control for linear impulsive stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    8. Hejun Yao & Fangzheng Gao, 2022. "Design of Observer and Dynamic Output Feedback Control for Fuzzy Networked Systems," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    9. Yan, Shen & Yang, Fan & Gu, Zhou, 2020. "Derivative-based event-triggered control for networked systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    10. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    11. Mayank Kumar Gautam & Avadh Pati & Sunil Kumar Mishra & Bhargav Appasani & Ersan Kabalci & Nicu Bizon & Phatiphat Thounthong, 2021. "A Comprehensive Review of the Evolution of Networked Control System Technology and Its Future Potentials," Sustainability, MDPI, vol. 13(5), pages 1-39, March.
    12. Wu, Zhenyu & Chen, Jiawei & Zhang, Xuexi & Xiao, Zehui & Tao, Jie & Wang, Xiaofeng, 2022. "Dynamic event-triggered synchronization of complex networks with switching topologies: Asynchronous observer-based case," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    13. Li, Ming-Yang & Xie, Wen-Bo & Wang, Yu-Long & Hu, Xin, 2022. "Prescribed performance trajectory tracking fault-tolerant control for dynamic positioning vessels under velocity constraints," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    14. He, Miao & Rong, Taotao & Li, Junmin & He, Chao, 2021. "Adaptive dynamic surface full state constraints control for stochastic Markov jump systems based on event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    15. Zhang, Qiliang & Feng, Jun-e & Wang, Biao & Wang, Peihe, 2020. "Event-triggered mechanism of designing set stabilization state feedback controller for switched Boolean networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    16. Chen, Siya & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2020. "Almost sure exponential synchronization of drive-response stochastic memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    17. Wang, Yingchun & Zheng, Yu & Xie, Xiangpeng & Yang, Jun, 2020. "An improved reduction method based networked control against false data injection attacks and stochastic input delay," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    18. Zhang, Dan & Chen, Xuefeng & Wang, Hui & Ren, Hangli & Xu, Huiling, 2024. "Event-triggered H∞ control for networked dynamic system with nonideal interconnection," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    19. Li, Ping & Song, Zhibao & Wang, Zhen & Liu, Wenhui, 2020. "Fixed-time consensus for disturbed multiple Euler-Lagrange systems with connectivity preservation and quantized input," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    20. Saravanan Shanmugam & Rajarathinam Vadivel & Nallappan Gunasekaran, 2023. "Finite-Time Synchronization of Quantized Markovian-Jump Time-Varying Delayed Neural Networks via an Event-Triggered Control Scheme under Actuator Saturation," Mathematics, MDPI, vol. 11(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:444:y:2023:i:c:s0096300322008815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.