IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v433y2022ics009630032200474x.html
   My bibliography  Save this article

Model-free finite-horizon optimal tracking control of discrete-time linear systems

Author

Listed:
  • Wang, Wei
  • Xie, Xiangpeng
  • Feng, Changyang

Abstract

Conventionally, the finite-horizon linear quadratic tracking (FHLQT) problem relies on solving the time-varying Riccati equations and the time-varying non-causal difference equations as the system dynamics is known. In this paper, with unknown system dynamics being considered, a Q-function-based model-free method is developed to solve the FHLQT problem. First, an augmented system consisting of the controlled system and the desired trajectory system is formulated, and the FHLQT problem transforms to the finite-horizon linear quadratic regulator (FHLQR) problem with the augmented system. Then, a time-varying Q-function which depends explicitly on the control input is defined. With the defined time-varying Q-function, a model-free finite-horizon control method is developed to approximate the solutions of the time-varying Riccati equations of the transformed FHLQR problem. At last, simulation studies are carried out to verify the validity of the developed method.

Suggested Citation

  • Wang, Wei & Xie, Xiangpeng & Feng, Changyang, 2022. "Model-free finite-horizon optimal tracking control of discrete-time linear systems," Applied Mathematics and Computation, Elsevier, vol. 433(C).
  • Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s009630032200474x
    DOI: 10.1016/j.amc.2022.127400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032200474X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao Lin & Qinglai Wei & Derong Liu, 2017. "A novel optimal tracking control scheme for a class of discrete-time nonlinear systems using generalised policy iteration adaptive dynamic programming algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(3), pages 525-534, February.
    2. Cui, Lili & Xie, Xiangpeng & Wang, Xiaowei & Luo, Yanhong & Liu, Jingbo, 2019. "Event-triggered single-network ADP method for constrained optimal tracking control of continuous-time non-linear systems," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 220-234.
    3. Shizheng Wan & Xiaofei Chang & Quancheng Li & Jie Yan, 2019. "Finite-Horizon Optimal Tracking Guidance for Aircraft Based on Approximate Dynamic Programming," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, March.
    4. Yoo, Sung Jin & Park, Bong Seok, 2021. "Quantized feedback control strategy for tracking performance guarantee of nonholonomic mobile robots with uncertain nonlinear dynamics," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    5. Wang, Di & Liu, Can & Ding, Dawei & Gao, Suixiang & Chu, Ming, 2022. "Finite-time optimal tracking control using augmented error system method," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xianming & Shen, Mouquan, 2023. "Model free optimal control of unknown nonaffine nonlinear systems with input quantization and DoS attack," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    2. Zhao, Yanwei & Wang, Huanqing & Xu, Ning & Zong, Guangdeng & Zhao, Xudong, 2023. "Reinforcement learning-based decentralized fault tolerant control for constrained interconnected nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Amin Taghieh & Ardashir Mohammadzadeh & Jafar Tavoosi & Saleh Mobayen & Thaned Rojsiraphisal & Jihad H. Asad & Anton Zhilenkov, 2021. "Observer-Based Control for Nonlinear Time-Delayed Asynchronously Switching Systems: A New LMI Approach," Mathematics, MDPI, vol. 9(22), pages 1-25, November.
    4. Cui, Lili & Zhang, Yong & Wang, Xiaowei & Xie, Xiangpeng, 2021. "Event-triggered distributed self-learning robust tracking control for uncertain nonlinear interconnected systems," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    5. Miranda-Colorado, Roger, 2022. "Observer-based proportional integral derivative control for trajectory tracking of wheeled mobile robots with kinematic disturbances," Applied Mathematics and Computation, Elsevier, vol. 432(C).
    6. Xiongfeng Deng & Jiakai Wang, 2022. "Fuzzy-Based Adaptive Dynamic Surface Control for a Type of Uncertain Nonlinear System with Unknown Actuator Faults," Mathematics, MDPI, vol. 10(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s009630032200474x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.