IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v428y2022ics0096300322002594.html
   My bibliography  Save this article

An economical robust algorithm for solving 1D coupled Burgers’ equations in a semi-Lagrangian framework

Author

Listed:
  • Park, Sangbeom
  • Kim, Philsu
  • Jeon, Yonghyeon
  • Bak, Soyoon

Abstract

In this study, we propose an efficient algorithm for solving one-dimensional coupled viscous Burgers’ equations. One of the main accomplishments of this study is to develop a stable high-order algorithm for the system of reaction–diffusion equations. The algorithm is “robust” because it is designed to prevent non-physical oscillations through an iteration procedure of a block Gauss-Seidel type. The other is to develop an efficient algorithm for the Cauchy problem. For this, we first find half of the upstream points by adopting a multi-step qth-order (q=2,3) error correction method. The algorithm is also “economical” in the sense that an interpolation strategy for finding the remaining upstream points is designed to dramatically reduce the high computational cost for solving the nonlinear Cauchy problem without damage to the order of accuracy. Three benchmark problems are simulated to investigate the accuracy and the superiority of the proposed method. It turns out that the proposed method numerically has the qth-order temporal and 4th-order spatial accuracies. In addition, the numerical experiments show that the proposed method is superior to the compared methods in the sense of the computational cost.

Suggested Citation

  • Park, Sangbeom & Kim, Philsu & Jeon, Yonghyeon & Bak, Soyoon, 2022. "An economical robust algorithm for solving 1D coupled Burgers’ equations in a semi-Lagrangian framework," Applied Mathematics and Computation, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002594
    DOI: 10.1016/j.amc.2022.127185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322002594
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qianhuan & Chai, Zhenhua & Shi, Baochang, 2015. "A novel lattice Boltzmann model for the coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 948-957.
    2. Doğan Kaya, 2001. "An explicit solution of coupled viscous Burgers' equation by the decomposition method," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 27, pages 1-6, January.
    3. Mohanty, R.K. & Dai, Weizhong & Han, Fei, 2015. "Compact operator method of accuracy two in time and four in space for the numerical solution of coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 381-393.
    4. Chen, Aihua & Li, Xuemei, 2006. "Darboux transformation and soliton solutions for Boussinesq–Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 43-49.
    5. Lai, Huilin & Ma, Changfeng, 2014. "A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 445-457.
    6. Kim, Philsu & Kim, Dojin, 2020. "Convergence and stability of a BSLM for advection-diffusion models with Dirichlet boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    7. Soliman, A.A., 2006. "The modified extended tanh-function method for solving Burgers-type equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 394-404.
    8. Chen, Changkai & Zhang, Xiaohua & Liu, Zhang, 2020. "A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers’ system," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Başhan, Ali, 2020. "A numerical treatment of the coupled viscous Burgers’ equation in the presence of very large Reynolds number," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Li, Qianhuan & Chai, Zhenhua & Shi, Baochang, 2015. "A novel lattice Boltzmann model for the coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 948-957.
    3. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    4. Zhang, Xu & Jiang, Yanqun & Hu, Yinggang & Chen, Xun, 2022. "High-order implicit weighted compact nonlinear scheme for nonlinear coupled viscous Burgers’ equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 151-165.
    5. Attaullah & Muhammad Shakeel & Nehad Ali Shah & Jae Dong Chung, 2022. "Modified Exp-Function Method to Find Exact Solutions of Ionic Currents along Microtubules," Mathematics, MDPI, vol. 10(6), pages 1-10, March.
    6. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.
    7. Lai, Huilin & Ma, Changfeng, 2014. "A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 445-457.
    8. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    9. Soliman, A.A., 2009. "On the solution of two-dimensional coupled Burgers’ equations by variational iteration method," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1146-1155.
    10. Cengizci, Süleyman & Uğur, Ömür, 2023. "A stabilized FEM formulation with discontinuity-capturing for solving Burgers’-type equations at high Reynolds numbers," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    11. Mohanty, R.K. & Dai, Weizhong & Han, Fei, 2015. "Compact operator method of accuracy two in time and four in space for the numerical solution of coupled viscous Burgers’ equations," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 381-393.
    12. Geng, Tao & Shan, Wen-Rui & Lü, Xing & Cai, Ke-Jie & Zhang, Cheng & Tian, Bo, 2009. "New solitary solutions and non-elastic interactions of the (2+1)-dimensional variable-coefficient Broer–Kaup system with symbolic computation," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2230-2235.
    13. Chen, Changkai & Zhang, Xiaohua & Liu, Zhang, 2020. "A high-order compact finite difference scheme and precise integration method based on modified Hopf-Cole transformation for numerical simulation of n-dimensional Burgers’ system," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    14. Krivovichev, Gerasim V., 2018. "Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 102-119.
    15. Cui, Lijie & Lin, Chuandong, 2021. "A simple and efficient kinetic model for wealth distribution with saving propensity effect: Based on lattice gas automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    16. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    17. Abourabia, A.M. & El-Danaf, T.S. & Morad, A.M., 2009. "Exact solutions of the hierarchical Korteweg–de Vries equation of microstructured granular materials," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 716-726.
    18. Piao, Xiangfan & Kim, Philsu, 2021. "Comment on: “The modified extended tanh-function method for solving Burgers-type equations” [Physica A 361 (2006) 394–404]," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322002594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.