IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v402y2021ics0096300320305919.html
   My bibliography  Save this article

A numerical method for solvability of some non-linear functional integral equations

Author

Listed:
  • Deep, Amar
  • Deepmala,
  • Rabbani, Mohsen

Abstract

In this article, we prove the existence of solution for some non-linear functional integral equations of two variables in Banach algebra C([0,b][0,c],R),b,c>0, which is the generalized the results of several papers. We use the idea of Darbo fixed point theorem for the product of operators in the above space. Modified homotopy perturbation method to solve these types of non-linear functional integral equations is also explained with a supporting example.

Suggested Citation

  • Deep, Amar & Deepmala, & Rabbani, Mohsen, 2021. "A numerical method for solvability of some non-linear functional integral equations," Applied Mathematics and Computation, Elsevier, vol. 402(C).
  • Handle: RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300320305919
    DOI: 10.1016/j.amc.2020.125637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biazar, J. & Ghazvini, H., 2009. "He’s homotopy perturbation method for solving systems of Volterra integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 770-777.
    2. Biazar, J. & Ghazvini, H. & Eslami, M., 2009. "He’s homotopy perturbation method for systems of integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1253-1258.
    3. Yanying Ma & Jin Huang & Hu Li, 2015. "A Novel Numerical Method of Two-Dimensional Fredholm Integral Equations of the Second Kind," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, July.
    4. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    5. Rabbani, Mohsen & Arab, Reza & Hazarika, Bipan, 2019. "Solvability of nonlinear quadratic integral equation by using simulation type condensing operator and measure of noncompactness," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 102-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazemi, M. & Yaghoobnia, A.R., 2022. "Application of fixed point theorem to solvability of functional stochastic integral equations," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    2. Deep, Amar & Deepmala, & Hazarika, Bipan, 2021. "An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvandi, Azizallah & Paripour, Mahmoud, 2019. "The combined reproducing kernel method and Taylor series for handling nonlinear Volterra integro-differential equations with derivative type kernel," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 151-160.
    2. Chandra Guru Sekar, R. & Murugesan, K., 2016. "System of linear second order Volterra integro-differential equations using Single Term Walsh Series technique," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 484-492.
    3. Deep, Amar & Deepmala, & Ezzati, R., 2021. "Application of Petryshyn’s fixed point theorem to solvability for functional integral equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    4. Chakraborty, Samiran & Nelakanti, Gnaneshwar, 2023. "Superconvergence of system of Volterra integral equations by spectral approximation method," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Sahu, P.K. & Ray, S.Saha, 2015. "Legendre wavelets operational method for the numerical solutions of nonlinear Volterra integro-differential equations system," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 715-723.
    6. Alim, Md. Abdul & Kawser, M. Abul, 2023. "Illustration of the homotopy perturbation method to the modified nonlinear single degree of freedom system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Yildirim, Ahmet, 2009. "Homotopy perturbation method for the mixed Volterra–Fredholm integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2760-2764.
    8. Hoang Viet Long & Haifa Bin Jebreen & Stefania Tomasiello, 2020. "Multi-Wavelets Galerkin Method for Solving the System of Volterra Integral Equations," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    9. Matin far, Mashallah & Pourabd, Masoumeh, 2015. "Moving least square for systems of integral equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 879-889.
    10. Rabbani, Mohsen & Das, Anupam & Hazarika, Bipan & Arab, Reza, 2020. "Measure of noncompactness of a new space of tempered sequences and its application on fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Sadaf, Hina & Akbar, Muhammad Usman & Nadeem, S., 2018. "Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 16-36.
    12. Liu, Tao, 2022. "Porosity reconstruction based on Biot elastic model of porous media by homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:402:y:2021:i:c:s0096300320305919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.