IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v374y2020ics0096300320300321.html
   My bibliography  Save this article

Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks

Author

Listed:
  • Sun, Chengbin
  • Luo, Chao

Abstract

In real life, some individuals generally have more influence than ordinary people. Their behaviors are easily learned by other individuals. In this article, we propose influence-based preferential selection multi-games model on interdependent networks, where influence of players as a factor to be considered is involved in multiple game models and coevolved with cooperation. By using of coupled lattices, the effect of the cooperative behaviors of the system is comprehensively studies. Besides, in real life, resources are always related to the outcome of game. The results in game generally determine the allocation of limited resources, which in turn affects the choice of strategy. Hence, limited resources as a co-evolutionary factor are also introduced into the game model, which mutual interacts with individual's strategy and influence. Based on multi-game model, the evolutionary dynamics of the model in detail is discussed. We find that the preferential selection mechanism based on influence can effectively improve the cooperative behaviors of the system, where the influence growth factor increases and the cooperation evolution also monotonously increases. Furthermore, the interdependent strength, sucker's payoff and the distribution of limited resources would have different effects on the dynamics of the system.

Suggested Citation

  • Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of influence-based preferential selection and limited resource with multi-games on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 374(C).
  • Handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300320300321
    DOI: 10.1016/j.amc.2020.125063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhibin & Jia, Danyang & Guo, Hao & Geng, Yini & Shen, Chen & Wang, Zhen & Li, Xuelong, 2019. "The effect of multigame on cooperation in spatial network," Applied Mathematics and Computation, Elsevier, vol. 351(C), pages 162-167.
    2. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    3. Hu, Kaipeng & Guo, Hao & Geng, Yini & Shi, Lei, 2019. "The effect of conformity on the evolution of cooperation in multigame," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 267-272.
    4. Zhao, Jinqiu & Luo, Chao, 2019. "The effect of preferential teaching and memory on cooperation clusters in interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    5. Tanimoto, Jun & Nakata, Makoto & Hagishima, Aya & Ikegaya, Naoki, 2012. "Spatially correlated heterogeneous aspirations to enhance network reciprocity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 680-685.
    6. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    7. Johannes G. Reiter & Christian Hilbe & David G. Rand & Krishnendu Chatterjee & Martin A. Nowak, 2018. "Crosstalk in concurrent repeated games impedes direct reciprocity and requires stronger levels of forgiveness," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    8. Bo Xianyu, 2010. "Social Preference, Incomplete Information, and the Evolution of Ultimatum Game in the Small World Networks: An Agent-Based Approach," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(2), pages 1-7.
    9. Lei, Hui & Li, Tao & Ma, Yuede & Wang, Hua, 2018. "Analyzing lattice networks through substructures," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 297-314.
    10. Tan, Mian & Yang, Tinghong & Chen, Xing & Yang, Gang & Zhu, Guoqing & Holme, Petter & Zhao, Jing, 2018. "A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 129-139.
    11. Liu, Jinzhuo & Meng, Haoran & Wang, Wei & Li, Tong & Yu, Yong, 2018. "Synergy punishment promotes cooperation in spatial public good game," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 214-218.
    12. Luo, Chao & Jiang, Zhipeng, 2017. "Coevolving allocation of resources and cooperation in spatial evolutionary games," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 47-57.
    13. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    14. Wang, Qun & Wang, Hanchen & Zhang, Zhuxi & Li, Yumeng & Liu, Yu & Perc, Matjaž, 2018. "Heterogeneous investments promote cooperation in evolutionary public goods games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 570-575.
    15. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    16. Geoffrey Hodgson & Kainan Huang, 2012. "Evolutionary game theory and evolutionary economics: are they different species?," Journal of Evolutionary Economics, Springer, vol. 22(2), pages 345-366, April.
    17. Wang, Yijia & Chen, Xiaojie & Wang, Zhijian, 2017. "Testability of evolutionary game dynamics based on experimental economics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 455-464.
    18. Wang, Qiuling & Meng, Haoran & Gao, Bo, 2019. "Spontaneous punishment promotes cooperation in public good game," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 183-187.
    19. Xuwen Wang & Sen Nie & Binghong Wang, 2015. "Dependency Links Can Hinder the Evolution of Cooperation in the Prisoner’s Dilemma Game on Lattices and Networks," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-9, March.
    20. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    21. Pu, Jia & Jia, Tao & Li, Ya, 2019. "Effects of time cost on the evolution of cooperation in snowdrift game," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 146-151.
    22. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    23. Deng, Zheng-Hong & Huang, Yi-Jie & Gu, Zhi-Yang & Liu, Dan & Gao, Li, 2018. "Multigames with voluntary participation on interdependent networks and the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 151-157.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Qin & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of quasi-cooperative strategy on social dilemma evolution," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Liao, Hui-Min & Hao, Qing-Yi & Qian, Jia-Li & Wu, Chao-Yun & Guo, Ning & Ling, Xiang, 2023. "Cooperative evolution under the joint influence of local popularity and global popularity," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    3. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    4. Gao, Bo & Hong, Jie & Guo, Hao & Dong, Suyalatu & Lan, Zhong-Zhou, 2023. "Cooperative evolution and symmetry breaking in interdependent networks based on alliance mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Lu, Shounan & Zhu, Ge & Dai, Jianhua, 2023. "Promoting effect of adaptive interaction based on random neighbors to cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiuling & Du, Chunpeng, 2019. "Impact of expansion of priority range on cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 77-80.
    2. Li, Jiaqi & Zhang, Jianlei & Chen, Zengqiang & Liu, Qun, 2023. "Aspiration drives adaptive switching between two different payoff matrices," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    4. Sun, Chengbin & Luo, Chao & Li, Junqiu, 2020. "Aspiration-based co-evolution of cooperation with resource allocation on interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Shi, Juan & Hu, Die & Tao, Rui & Peng, Yunchen & Li, Yong & Liu, Jinzhuo, 2021. "Interaction between populations promotes cooperation in voluntary prisoner's dilemma," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    6. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    8. Gao, Liyan & Pan, Qiuhui & He, Mingfeng, 2022. "Advanced defensive cooperators promote cooperation in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Wu, Yu’e & Zhang, Zhipeng & Wang, Xinyu & Yan, Ming & Zhang, Qingfeng & Zhang, Shuhua, 2021. "Evolution of cooperation in the multigame on a two-layer square network," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    10. Deng, Xinyang & Jiang, Wen & Wang, Zhen, 2020. "An Information Source Selection Model Based on Evolutionary Game Theory," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    11. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Chu, Chen & Zhai, Yao & Mu, Chunjiang & Hu, Die & Li, Tong & Shi, Lei, 2019. "Reputation-based popularity promotes cooperation in the spatial prisoner's dilemma game," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    13. Bin, Liu & Yue, Wu, 2023. "Co-evolution of reputation-based preference selection and resource allocation with multigame on interdependent networks," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    14. Deng, Zheng-Hong & Wang, Zi-Ren & Wang, Huan-Bo & Xu, Lin, 2021. "The evolution of cooperation in multi-games with popularity-driven fitness calculation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    15. Gao, Bo & Hong, Jie & Guo, Hao & Dong, Suyalatu & Lan, Zhong-Zhou, 2023. "Cooperative evolution and symmetry breaking in interdependent networks based on alliance mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    16. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    17. Sun, Chengbin & Luo, Chao, 2020. "Co-evolution of limited resources in the memory-based spatial evolutionary game," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    18. Wang, Zi-Ren & Deng, Zheng-Hong & Wang, Huan-Bo & Qu, Yun, 2021. "Moderate irrational sentiment-driven fitness can promote cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    19. Ping Zhu & Guiyi Wei, 2014. "Stochastic Heterogeneous Interaction Promotes Cooperation in Spatial Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.
    20. Zha, Jiajing & Li, Cong & Fan, Suohai, 2022. "The effect of stability-based strategy updating on cooperation in evolutionary social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:374:y:2020:i:c:s0096300320300321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.