IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v367y2020ics009630031930709x.html
   My bibliography  Save this article

Lagrange’s operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions

Author

Listed:
  • Devi, Vinita
  • Maurya, Rahul Kumar
  • Singh, Somveer
  • Singh, Vineet Kumar

Abstract

The key purpose of this study is to present two schemes based on Lagrange polynomials to deal with the numerical solution of second order two-dimensional telegraph equation (TDTE) with the Dirichlet boundary conditions. First, we convert the main equation into partial integro-differential equations (PIDEs) with the help of initial and boundary conditions. The operational matrices of differentiation and integration are then used to transform the PIDEs into algebraic generalized Sylvester equation. We compared the results obtained by the proposed schemes with Bernoulli matrix method and B-spline differential quadrature method which shows that the proposed schemes are accurate for small number of basis functions.

Suggested Citation

  • Devi, Vinita & Maurya, Rahul Kumar & Singh, Somveer & Singh, Vineet Kumar, 2020. "Lagrange’s operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions," Applied Mathematics and Computation, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s009630031930709x
    DOI: 10.1016/j.amc.2019.124717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031930709X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.124717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orsingher, Enzo, 1985. "Hyperbolic equations arising in random models," Stochastic Processes and their Applications, Elsevier, vol. 21(1), pages 93-106, December.
    2. Dehghan, Mehdi & Shirilord, Akbar, 2019. "A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 632-651.
    3. Singh, Somveer & Patel, Vijay Kumar & Singh, Vineet Kumar & Tohidi, Emran, 2017. "Numerical solution of nonlinear weakly singular partial integro-differential equation via operational matrices," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 310-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Yashveer & Singh, Vineet Kumar, 2021. "Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 531-569.
    2. Kai Jiang & Jianghao Su & Juan Zhang, 2022. "A Data-Driven Parameter Prediction Method for HSS-Type Methods," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
    3. Kolesnik, Alexander D. & Turbin, Anatoly F., 1998. "The equation of symmetric Markovian random evolution in a plane," Stochastic Processes and their Applications, Elsevier, vol. 75(1), pages 67-87, June.
    4. Kumar, Yashveer & Yadav, Poonam & Singh, Vineet Kumar, 2023. "Distributed order Gauss-Quadrature scheme for distributed order fractional sub-diffusion model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    5. Anatoliy A. Pogorui & Anatoliy Swishchuk & Ramón M. Rodríguez-Dagnino, 2021. "Transformations of Telegraph Processes and Their Financial Applications," Risks, MDPI, vol. 9(8), pages 1-21, August.
    6. Fu, Chunhong & Chen, Jiajia & Xu, Qingxiang, 2021. "Upper bounds and lower bounds for the Frobenius norm of the solution to certain structured Sylvester equation," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    7. Singh, Somveer & Devi, Vinita & Tohidi, Emran & Singh, Vineet Kumar, 2020. "An efficient matrix approach for two-dimensional diffusion and telegraph equations with Dirichlet boundary conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    8. Iacus, Stefano Maria, 2001. "Statistical analysis of the inhomogeneous telegrapher's process," Statistics & Probability Letters, Elsevier, vol. 55(1), pages 83-88, November.
    9. Antonio Di Crescenzo & Shelemyahu Zacks, 2015. "Probability Law and Flow Function of Brownian Motion Driven by a Generalized Telegraph Process," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 761-780, September.
    10. Filliger, Roger & Hongler, Max-Olivier, 2004. "Supersymmetry in random two-velocity processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 141-150.
    11. Maciej Trzetrzelewski, 2013. "Relativistic Black-Scholes model," Papers 1307.5122, arXiv.org, revised Feb 2018.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s009630031930709x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.