IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v359y2019icp294-307.html
   My bibliography  Save this article

The stability with a general decay of stochastic delay differential equations with Markovian switching

Author

Listed:
  • Zhang, Tian
  • Chen, Huabin

Abstract

This paper considers the problems on the existence and uniqueness, the pth(p ≥ 1)-moment and the almost sure stability with a general decay for the global solution of stochastic delay differential equations with Markovian switching, when the drift term and the diffusion term satisfy the locally Lipschitz condition and the monotonicity condition. By using the Lyapunov function approach, the Barbalat Lemma and the nonnegative semi-martingale convergence theorem, some sufficient conditions are proposed to guarantee the existence and uniqueness as well as the stability with a general decay for the global solution of such equations. It is mentioned that, in this paper, the time-varying delay is a bounded measurable function. The derived stability results are more general, which not only include the exponential stability but also the polynomial stability as well as the logarithmic one. At last, two examples are given to show the effectiveness of the theoretical results obtained.

Suggested Citation

  • Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
  • Handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:294-307
    DOI: 10.1016/j.amc.2019.04.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300319303455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2019.04.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Fuke & Hu, Shigeng, 2011. "Khasminskii-type theorems for stochastic functional differential equations with infinite delay," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1690-1694, November.
    2. Yuan, Chenggui & Mao, Xuerong, 2003. "Asymptotic stability in distribution of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 103(2), pages 277-291, February.
    3. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    4. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    5. You, Surong & Mao, Wei & Mao, Xuerong & Hu, Liangjian, 2015. "Analysis on exponential stability of hybrid pantograph stochastic differential equations with highly nonlinear coefficients," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 73-83.
    6. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    7. You, Surong & Hu, Liangjian & Mao, Wei & Mao, Xuerong, 2015. "Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 8-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiamin & Li, Zhao-Yan & Deng, Feiqi, 2021. "Asymptotic behavior analysis of Markovian switching neutral-type stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    2. Gao, Yin & Jia, Lifen, 2021. "Stability in mean for uncertain delay differential equations based on new Lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 399(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Xu, Yan & He, Zhimin & Wang, Peiguang, 2015. "pth moment asymptotic stability for neutral stochastic functional differential equations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 594-605.
    3. Feng, Lichao & Liu, Qiumei & Cao, Jinde & Zhang, Chunyan & Alsaadi, Fawaz, 2022. "Stabilization in general decay rate of discrete feedback control for non-autonomous Markov jump stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    4. Feng, Lichao & Liu, Lei & Wu, Zhihui & Liu, Qiumei, 2021. "Stability analysis for nonlinear Markov jump neutral stochastic functional differential systems," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    5. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    6. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    7. Bao, Jianhai & Hou, Zhenting & Yuan, Chenggui, 2009. "Stability in distribution of neutral stochastic differential delay equations with Markovian switching," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1663-1673, August.
    8. Wu, Fuke & Hu, Shigeng, 2011. "Khasminskii-type theorems for stochastic functional differential equations with infinite delay," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1690-1694, November.
    9. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    10. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    11. Fu, Xiaozheng & Zhu, Quanxin & Guo, Yingxin, 2019. "Stabilization of stochastic functional differential systems with delayed impulses," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 776-789.
    12. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    13. Wälde, Klaus & Bayer, Christian, 2011. "Describing the Dynamics of Distribution in Search and Matching Models by Fokker-Planck Equations," VfS Annual Conference 2011 (Frankfurt, Main): The Order of the World Economy - Lessons from the Crisis 48736, Verein für Socialpolitik / German Economic Association.
    14. Weimin Chen & Qian Ma & Lanning Wang & Huiling Xu, 2018. "Stabilisation and control of neutral stochastic delay Markovian jump systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 49(1), pages 58-67, January.
    15. Mei, Hongwei & Yin, George & Wu, Fuke, 2016. "Properties of stochastic integro-differential equations with infinite delay: Regularity, ergodicity, weak sense Fokker–Planck equations," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3102-3123.
    16. Wu, Yongbao & Guo, Haihua & Li, Wenxue, 2020. "Finite-time stabilization of stochastic coupled systems on networks with Markovian switching via feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    17. Gao, Shuaibin & Li, Xiaotong & Liu, Zhuoqi, 2023. "Stationary distribution of the Milstein scheme for stochastic differential delay equations with first-order convergence," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    18. Wan, Fangzhe & Hu, Po & Chen, Huabin, 2020. "Stability analysis of neutral stochastic differential delay equations driven by Lévy noises," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    19. Li, Zhi & Zhang, Wei, 2017. "Stability in distribution of stochastic Volterra–Levin equations," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 20-27.
    20. Tan, Li & Jin, Wei & Suo, Yongqiang, 2015. "Stability in distribution of neutral stochastic functional differential equations," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 27-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:359:y:2019:i:c:p:294-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.