IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v315y2017icp372-380.html
   My bibliography  Save this article

On solitary wave solutions of a class of nonlinear partial differential equations based on the function 1/coshn(αx+βt)

Author

Listed:
  • Vitanov, Nikolay K.
  • Dimitrova, Zlatinka I.
  • Ivanova, Tsvetelina I.

Abstract

The method of simplest equation is applied for obtaining exact solitary traveling-wave solutions of nonlinear partial differential equations that contain monomials of odd and even grade with respect to participating derivatives. The used simplest equation is fξ2=n2(f2−f(2n+2)/n). The developed methodology is illustrated on examples of classes of nonlinear partial differential equations that contain: (i) only monomials of odd grade with respect to participating derivatives; (ii) only monomials of even grade with respect to participating derivatives; (iii) monomials of odd and monomials of even grades with respect to participating derivatives. The obtained solitary wave solution for the case (i) contains as particular cases the solitary wave solutions of Korteweg–deVries equation and of a version of the modified Korteweg–deVries equation. One of the obtained solitary wave solutions for the case (ii) is a solitary wave solution of the classic version of the Boussinesq-type equation.

Suggested Citation

  • Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Ivanova, Tsvetelina I., 2017. "On solitary wave solutions of a class of nonlinear partial differential equations based on the function 1/coshn(αx+βt)," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 372-380.
  • Handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:372-380
    DOI: 10.1016/j.amc.2017.07.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kudryashov, Nikolai A., 2005. "Simplest equation method to look for exact solutions of nonlinear differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 24(5), pages 1217-1231.
    2. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    3. Kudryashov, Nikolai A. & Demina, Maria V., 2007. "Polygons of differential equations for finding exact solutions," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1480-1496.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitanov, Nikolay K. & Dimitrova, Zlatinka I. & Vitanov, Kaloyan N., 2015. "Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 363-378.
    2. Zhang, Jianying & Yan, Guangwu, 2008. "Lattice Boltzmann method for one and two-dimensional Burgers equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4771-4786.
    3. Innocent Simbanefayi & Chaudry Masood Khalique, 2020. "Group Invariant Solutions and Conserved Quantities of a (3+1)-Dimensional Generalized Kadomtsev–Petviashvili Equation," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    4. Fahmy, E.S., 2008. "Travelling wave solutions for some time-delayed equations through factorizations," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1209-1216.
    5. Mustafa Inc & Rubayyi T. Alqahtani & Ravi P. Agarwal, 2023. "W-Shaped Bright Soliton of the (2 + 1)-Dimension Nonlinear Electrical Transmission Line," Mathematics, MDPI, vol. 11(7), pages 1-13, April.
    6. Chaudry Masood Khalique & Karabo Plaatjie, 2021. "Symmetry Methods and Conservation Laws for the Nonlinear Generalized 2D Equal-Width Partial Differential Equation of Engineering," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    7. Yang, Lijuan & Du, Xianyun & Yang, Qiongfen, 2016. "New variable separation solutions to the (2 + 1)-dimensional Burgers equation," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1271-1275.
    8. Zayed, E.M.E. & Alurrfi, K.A.E., 2016. "Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations," Applied Mathematics and Computation, Elsevier, vol. 289(C), pages 111-131.
    9. Andrei D. Polyanin, 2019. "Comparison of the Effectiveness of Different Methods for Constructing Exact Solutions to Nonlinear PDEs. Generalizations and New Solutions," Mathematics, MDPI, vol. 7(5), pages 1-19, April.
    10. Kudryashov, Nikolay A. & Ryabov, Pavel N., 2014. "Exact solutions of one pattern formation model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1090-1093.
    11. Zdravković, S. & Zeković, S. & Bugay, A.N. & Petrović, J., 2021. "Two component model of microtubules and continuum approximation," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    12. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    13. Silambarasan, Rathinavel & Baskonus, Haci Mehmet & Vijay Anand, R. & Dinakaran, M. & Balusamy, Balamurugan & Gao, Wei, 2021. "Longitudinal strain waves propagating in an infinitely long cylindrical rod composed of generally incompressible materials and its Jacobi elliptic function solutions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 566-602.
    14. Nickel, J., 2007. "Travelling wave solutions to the Kuramoto–Sivashinsky equation," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1376-1382.
    15. Ranković, Dragana & Zdravković, Slobodan, 2022. "Two component model of microtubules – subsonic and supersonic solitary waves," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    16. Kudryashov, Nikolay A. & Zakharchenko, Anastasia S., 2014. "Painlevé analysis and exact solutions for the Belousov–Zhabotinskii reaction–diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 111-117.
    17. Eslami, Mostafa, 2016. "Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 141-148.
    18. Kudryashov, N.A., 2015. "On nonlinear differential equation with exact solutions having various pole orders," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 173-177.
    19. Yusuf Pandir & Halime Ulusoy, 2013. "New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations," Journal of Mathematics, Hindawi, vol. 2013, pages 1-5, January.
    20. Oke Davies Adeyemo & Lijun Zhang & Chaudry Masood Khalique, 2022. "Bifurcation Theory, Lie Group-Invariant Solutions of Subalgebras and Conservation Laws of a Generalized (2+1)-Dimensional BK Equation Type II in Plasma Physics and Fluid Mechanics," Mathematics, MDPI, vol. 10(14), pages 1-46, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:315:y:2017:i:c:p:372-380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.