IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp994-1002.html
   My bibliography  Save this article

Analytical and soliton solutions: Nonlinear model of nanobioelectronics transmission lines

Author

Listed:
  • Younis, Muhammad
  • Rizvi, Syed Tahir Raza
  • Ali, Safdar

Abstract

In this article, analytical solutions and different types of soliton envelopes: bright, dark and singular for the nonlinear model, namely, nanobioelectronics transmission lines have been constructed along with constrained conditions. The modified extended tanh-function method and exp-function method have been used to find analytical solutions, and while solitary wave ansatz is used to construct these soliton solutions. Additionally, the constraint conditions, for the existence of the soliton solutions are also listed.

Suggested Citation

  • Younis, Muhammad & Rizvi, Syed Tahir Raza & Ali, Safdar, 2015. "Analytical and soliton solutions: Nonlinear model of nanobioelectronics transmission lines," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 994-1002.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:994-1002
    DOI: 10.1016/j.amc.2015.05.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano, 2022. "The Analytical Solutions of the Stochastic mKdV Equation via the Mapping Method," Mathematics, MDPI, vol. 10(22), pages 1-9, November.
    2. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Kumar, Dipankar & Seadawy, Aly R. & Haque, Md. Rabiul, 2018. "Multiple soliton solutions of the nonlinear partial differential equations describing the wave propagation in nonlinear low–pass electrical transmission lines," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 62-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    3. Suheel Abdullah Malik & Ijaz Mansoor Qureshi & Muhammad Amir & Aqdas Naveed Malik & Ihsanul Haq, 2015. "Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    4. Nguyen, Lu Trong Khiem, 2015. "Modified homogeneous balance method: Applications and new solutions," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 148-155.
    5. M. Ali Akbar & Md. Nur Alam & Md. Golam Hafez, 2016. "Application of the novel (G′/G)-expansion method to construct traveling wave solutions to the positive Gardner-KP equation," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 85-96, March.
    6. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    7. Bekir, Ahmet & Cevikel, Adem C., 2009. "New exact travelling wave solutions of nonlinear physical models," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1733-1739.
    8. Zhou, Jiangrui & Zhou, Rui & Zhu, Shihui, 2020. "Peakon, rational function and periodic solutions for Tzitzeica–Dodd–Bullough type equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    9. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    10. Sheng Zhang & Yuanyuan Wei & Bo Xu, 2019. "Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Nonlinear Systems: A Concrete Example," Complexity, Hindawi, vol. 2019, pages 1-9, August.
    11. Hassan Kamil Jassim & Mohammed Abdulshareef Hussein, 2023. "A New Approach for Solving Nonlinear Fractional Ordinary Differential Equations," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
    12. Akinyemi, Lanre & Şenol, Mehmet & Iyiola, Olaniyi S., 2021. "Exact solutions of the generalized multidimensional mathematical physics models via sub-equation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 211-233.
    13. Bekir, Ahmet & Boz, Ahmet, 2009. "Application of Exp-function method for (2+1)-dimensional nonlinear evolution equations," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 458-465.
    14. Abourabia, A.M. & Morad, A.M., 2015. "Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 333-350.
    15. Soliman, A.A., 2009. "Exact solutions of KdV–Burgers’ equation by Exp-function method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 1034-1039.
    16. Tao, Zhao-Ling, 2009. "Frequency–amplitude relationship of nonlinear oscillators by He’s parameter-expanding method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 642-645.
    17. Ali, A.H.A. & Raslan, K.R., 2009. "Variational iteration method for solving partial differential equations with variable coefficients," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1520-1529.
    18. Erbaş, Barış & Yusufoğlu, Elçin, 2009. "Exp-function method for constructing exact solutions of Sharma–Tasso–Olver equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2326-2330.
    19. Navickas, Z. & Ragulskis, M. & Telksnys, T., 2016. "Existence of solitary solutions in a class of nonlinear differential equations with polynomial nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 333-338.
    20. Ma, Wen-Xiu & Lee, Jyh-Hao, 2009. "A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1356-1363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:994-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.