IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v263y2015icp221-232.html
   My bibliography  Save this article

Traveling waves in a delayed SIR epidemic model with nonlinear incidence

Author

Listed:
  • Bai, Zhenguo
  • Wu, Shi-Liang

Abstract

We establish the existence and non-existence of traveling wave solutions for a diffusive SIR model with a general nonlinear incidence. The existence proof is shown by introducing an auxiliary system, applying Schauder’s fixed point theorem and then a limiting argument. The nonexistence proof is obtained by two-sided Laplace transform when the speed is less than the critical velocity. Numerical simulations support the theoretical results. We also point out the effects of the delay and the diffusion rate of the infective individuals on the spreading speed.

Suggested Citation

  • Bai, Zhenguo & Wu, Shi-Liang, 2015. "Traveling waves in a delayed SIR epidemic model with nonlinear incidence," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 221-232.
  • Handle: RePEc:eee:apmaco:v:263:y:2015:i:c:p:221-232
    DOI: 10.1016/j.amc.2015.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315005068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Zaili & Wei, Jingdong & Zhou, Jiangbo & Tian, Lixin, 2018. "Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 15-37.
    2. Kuilin Wu & Kai Zhou, 2019. "Traveling Waves in a Nonlocal Dispersal SIR Model with Standard Incidence Rate and Nonlocal Delayed Transmission," Mathematics, MDPI, vol. 7(7), pages 1-22, July.
    3. Zhu, Peican & Wang, Xinyu & Li, Shudong & Guo, Yangming & Wang, Zhen, 2019. "Investigation of epidemic spreading process on multiplex networks by incorporating fatal properties," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 512-524.
    4. Nan Xu & Yaoqun Xu, 2022. "Research on Tacit Knowledge Dissemination of Automobile Consumers’ Low-Carbon Purchase Intention," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    5. Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    6. Vsevolod G. Sorokin & Andrei V. Vyazmin, 2022. "Nonlinear Reaction–Diffusion Equations with Delay: Partial Survey, Exact Solutions, Test Problems, and Numerical Integration," Mathematics, MDPI, vol. 10(11), pages 1-39, May.
    7. Zhang, Zizhen & Kundu, Soumen & Tripathi, Jai Prakash & Bugalia, Sarita, 2020. "Stability and Hopf bifurcation analysis of an SVEIR epidemic model with vaccination and multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    8. Wang, Jinliang & Zhang, Ran & Kuniya, Toshikazu, 2021. "A reaction–diffusion Susceptible–Vaccinated–Infected–Recovered model in a spatially heterogeneous environment with Dirichlet boundary condition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 848-865.
    9. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Exact Solutions of Reaction–Diffusion PDEs with Anisotropic Time Delay," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    10. Andrei D. Polyanin & Vsevolod G. Sorokin, 2023. "Reductions and Exact Solutions of Nonlinear Wave-Type PDEs with Proportional and More Complex Delays," Mathematics, MDPI, vol. 11(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:263:y:2015:i:c:p:221-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.