IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v257y2015icp66-73.html
   My bibliography  Save this article

Controllability of fractional damped dynamical systems

Author

Listed:
  • Balachandran, K.
  • Govindaraj, V.
  • Rivero, M.
  • Trujillo, J.J.

Abstract

In this paper, we study the controllability of linear and nonlinear fractional damped dynamical systems, which involve fractional Caputo derivatives, with different order in finite dimensional spaces using the Mittag–Leffler matrix function and the iterative technique. A numerical example is provided to illustrate the theory.

Suggested Citation

  • Balachandran, K. & Govindaraj, V. & Rivero, M. & Trujillo, J.J., 2015. "Controllability of fractional damped dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 66-73.
  • Handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:66-73
    DOI: 10.1016/j.amc.2014.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300314017135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2014.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Narahari Achar, B.N. & Hanneken, John W. & Clarke, T., 2002. "Response characteristics of a fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 275-288.
    2. K. Balachandran & V. Govindaraj & L. Rodríguez-Germa & J. J. Trujillo, 2013. "Controllability Results for Nonlinear Fractional-Order Dynamical Systems," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 33-44, January.
    3. Achar, B.N.Narahari & Hanneken, J.W. & Enck, T. & Clarke, T., 2001. "Dynamics of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 297(3), pages 361-367.
    4. Tofighi, Ali, 2003. "The intrinsic damping of the fractional oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 29-34.
    5. Stanislavsky, Aleksander A., 2005. "Twist of fractional oscillations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    2. Haq, Abdul & Sukavanam, N., 2020. "Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    4. Tian, Xue & Zhang, Yi, 2021. "Fractional time-scales Noether theorem with Caputo Δ derivatives for Hamiltonian systems," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    5. Nyamoradi, Nemat & Rodríguez-López, Rosana, 2015. "On boundary value problems for impulsive fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 874-892.
    6. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    7. Cao, Yueju & Sun, Jitao, 2017. "Controllability of measure driven evolution systems with nonlocal conditions," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 119-126.
    8. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    9. Kumar, Vipin & Malik, Muslim & Debbouche, Amar, 2021. "Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    10. Zhang, Tao & Lu, Zhong-rong & Liu, Ji-ke & Chen, Yan-mao & Liu, Guang, 2023. "Parameter estimation of linear fractional-order system from laplace domain data," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    11. Wang, Zhi-Bo & Liu, Da-Yan & Boutat, Driss, 2022. "Algebraic estimation for fractional integrals of noisy acceleration based on the behaviour of fractional derivatives at zero," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    12. Li, Xuemei & Liu, Xinge & Tang, Meilan, 2021. "Approximate controllability of fractional evolution inclusions with damping," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    2. Arthi, G. & Park, Ju H. & Suganya, K., 2019. "Controllability of fractional order damped dynamical systems with distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 74-91.
    3. Mishra, Shalabh Kumar & Upadhyay, Dharmendra Kumar & Gupta, Maneesha, 2018. "An approach to improve the performance of fractional-order sinusoidal oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 126-135.
    4. Tian, Yan & Zhong, Lin-Feng & He, Gui-Tian & Yu, Tao & Luo, Mao-Kang & Stanley, H. Eugene, 2018. "The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 845-856.
    5. Liu, Q.X. & Liu, J.K. & Chen, Y.M., 2017. "An analytical criterion for jump phenomena in fractional Duffing oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 216-219.
    6. Svenkeson, A. & Beig, M.T. & Turalska, M. & West, B.J. & Grigolini, P., 2013. "Fractional trajectories: Decorrelation versus friction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(22), pages 5663-5672.
    7. Berman, Michael & Cederbaum, Lorenz S., 2018. "Fractional driven-damped oscillator and its general closed form exact solution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 744-762.
    8. Arthi, G. & Suganya, K., 2021. "Controllability of higher order stochastic fractional control delay systems involving damping behavior," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    10. Jiang, Wei & Chen, Zhong & Hu, Ning & Song, Haiyang & Yang, Zhaohong, 2020. "Multi-scale orthogonal basis method for nonlinear fractional equations with fractional integral boundary value conditions," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    11. B. Radhakrishnan & T. Sathya, 2022. "Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 265-281, October.
    12. Rehman, Mujeeb ur & Idrees, Amna & Saeed, Umer, 2017. "A quadrature method for numerical solutions of fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 38-49.
    13. Weiwei Liu & Lishan Liu, 2021. "Existence of Positive Solutions for a Higher-Order Fractional Differential Equation with Multi-Term Lower-Order Derivatives," Mathematics, MDPI, vol. 9(23), pages 1-23, November.
    14. Yiheng Wei & Bin Du & Songsong Cheng & Yong Wang, 2017. "Fractional Order Systems Time-Optimal Control and Its Application," Journal of Optimization Theory and Applications, Springer, vol. 174(1), pages 122-138, July.
    15. Kavyanpoor, Mobin & Shokrollahi, Saeed, 2017. "Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 44-45.
    16. Vishwamittar, & Batra, Priyanka & Chopra, Ribhu, 2021. "Stochastic resonance in two coupled fractional oscillators with potential and coupling parameters subjected to quadratic asymmetric dichotomous noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:257:y:2015:i:c:p:66-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.