Advanced Search
MyIDEAS: Login

Semiparametric estimation of Value at Risk

Contents:

Author Info

  • Jianqing Fan
  • Juan Gu

Abstract

Value at Risk (VaR) is a fundamental tool for managing market risks. It measures the worst loss to be expected of a portfolio over a given time horizon under normal market conditions at a given confidence level. Calculation of VaR frequently involves estimating the volatility of return processes and quantiles of standardized returns. In this paper, several semiparametric techniques are introduced to estimate the volatilities of the market prices of a portfolio. In addition, both parametric and nonparametric techniques are proposed to estimate the quantiles of standardized return processes. The newly proposed techniques also have the flexibility to adapt automatically to the changes in the dynamics of market prices over time. Their statistical efficiencies are studied both theoretically and empirically. The combination of newly proposed techniques for estimating volatility and standardized quantiles yields several new techniques for forecasting multiple period VaR. The performance of the newly proposed VaR estimators is evaluated and compared with some of existing methods. Our simulation results and empirical studies endorse the newly proposed time-dependent semiparametric approach for estimating VaR. Copyright Royal Economic Society, 2003

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/servlet/useragent?func=synergy&synergyAction=showTOC&journalCode=ectj&volume=6&issue=2&year=2003&part=null
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Royal Economic Society in its journal The Econometrics Journal.

Volume (Year): 6 (2003)
Issue (Month): 2 (December)
Pages: 261-290

as in new window
Handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:261-290

Contact details of provider:
Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Email:
Web page: http://www.res.org.uk/
More information through EDIRC

Order Information:
Web: http://www.ectj.org

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.
  2. Rombouts, J.V.K. & Verbeek, M.J.C.M., 2009. "Evaluating Portfolio Value-At-Risk Using Semi-Parametric GARCH Models," ERIM Report Series Research in Management ERS-2004-107-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus Uni.
  3. repec:wyi:journl:002095 is not listed on IDEAS
  4. repec:wyi:wpaper:001958 is not listed on IDEAS
  5. Maria Rosa Nieto & Esther Ruiz, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," Statistics and Econometrics Working Papers ws087326, Universidad Carlos III, Departamento de Estadística y Econometría.
  6. Jörg Polzehl & Vladimir Spokoiny, 2006. "Varying coefficient GARCH versus local constant volatility modeling. Comparison of the predictive power," SFB 649 Discussion Papers SFB649DP2006-033, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  7. Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.
  8. Escanciano, J. Carlos & Olmo, Jose, 2010. "Backtesting Parametric Value-at-Risk With Estimation Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 36-51.
  9. Escanciano, J. C. & Olmo, J., 2007. "Estimation risk effects on backtesting for parametric value-at-risk models," Working Papers 07/11, Department of Economics, City University London.
  10. Mstislav Elagin, 2008. "Locally adaptive estimation methods with application to univariate time series," Papers 0812.0449, arXiv.org.
  11. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:261-290. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.