Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimating GARCH models: when to use what?

Contents:

Author Info

  • Da Huang
  • Hansheng Wang
  • Qiwei Yao

Abstract

The class of generalized autoregressive conditional heteroscedastic (GARCH) models has proved particularly valuable in modelling time series with time varying volatility. These include financial data, which can be particularly heavy tailed. It is well understood now that the tail heaviness of the innovation distribution plays an important role in determining the relative performance of the two competing estimation methods, namely the maximum quasi-likelihood estimator based on a Gaussian likelihood (GMLE) and the log-transform-based least absolutely deviations estimator (LADE) (see Peng and Yao 2003Biometrika,90, 967--75). A practically relevant question is when to use what. We provide in this paper a solution to this question. By interpreting the LADE as a version of the maximum quasilikelihood estimator under the likelihood derived from assuming hypothetically that the log-squared innovations obey a Laplace distribution, we outline a selection procedure based on some goodness-of-fit type statistics. The methods are illustrated with both simulated and real data sets. Although we deal with the estimation for GARCH models only, the basic idea may be applied to address the estimation procedure selection problem in a general regression setting. Copyright Royal Economic Society 2008

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2008.00229.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Royal Economic Society in its journal Econometrics Journal.

Volume (Year): 11 (2008)
Issue (Month): 1 (03)
Pages: 27-38

as in new window
Handle: RePEc:ect:emjrnl:v:11:y:2008:i:1:p:27-38

Contact details of provider:
Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Email:
Web page: http://www.res.org.uk/
More information through EDIRC

Order Information:
Web: http://www.ectj.org

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Greg Hannsgen, 2011. "Infinite-variance, Alpha-stable Shocks in Monetary SVAR: Final Working Paper Version," Economics Working Paper Archive wp_682, Levy Economics Institute.
  2. Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers CWP11/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  3. Meintanis, Simos G. & Tsionas, Efthimios, 2010. "Testing for the generalized normal-Laplace distribution with applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3174-3180, December.
  4. Klar, B. & Lindner, F. & Meintanis, S.G., 2012. "Specification tests for the error distribution in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3587-3598.
  5. M. Jiménez Gamero, 2014. "On the empirical characteristic function process of the residuals in GARCH models and applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 23(2), pages 409-432, June.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:11:y:2008:i:1:p:27-38. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.