Advanced Search
MyIDEAS: Login to save this article or follow this journal

Efficient Semiparametric Estimation of Quantile Treatment Effects

Contents:

Author Info

  • Sergio Firpo

Abstract

This paper develops estimators for quantile treatment effects under the identifying restriction that selection to treatment is based on observable characteristics. Identification is achieved without requiring computation of the conditional quantiles of the potential outcomes. Instead, the identification results for the marginal quantiles lead to an estimation procedure for the quantile treatment effect parameters that has two steps: nonparametric estimation of the propensity score and computation of the difference between the solutions of two separate minimization problems. Root-N consistency, asymptotic normality, and achievement of the semiparametric efficiency bound are shown for that estimator. A consistent estimation procedure for the variance is also presented. Finally, the method developed here is applied to evaluation of a job training program and to a Monte Carlo exercise. Results from the empirical application indicate that the method works relatively well even for a data set with limited overlap between treated and controls in the support of covariates. The Monte Carlo study shows that, for a relatively small sample size, the method produces estimates with good precision and low bias, especially for middle quantiles. Copyright The Econometric Society 2007.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1111/j.1468-0262.2007.00738.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 75 (2007)
Issue (Month): 1 (01)
Pages: 259-276

as in new window
Handle: RePEc:ecm:emetrp:v:75:y:2007:i:1:p:259-276

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/
More information through EDIRC

Order Information:
Email:
Web: http://www.blackwellpublishing.com/memb.asp?ref=0012-9682

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, 01.
  2. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
  3. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
  4. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
  5. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
  6. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
  7. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
  8. Heckman, James J & Smith, Jeffrey, 1997. "Making the Most Out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts," Review of Economic Studies, Wiley Blackwell, vol. 64(4), pages 487-535, October.
  9. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  10. Joshua Angrist & Alan Krueger, 1998. "Empirical Strategies in Labor Economics," Working Papers 780, Princeton University, Department of Economics, Industrial Relations Section..
  11. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
  12. Richard B. Freeman, 1980. "Unionism and the dispersion of wages," Industrial and Labor Relations Review, ILR Review, Cornell University, ILR School, vol. 34(1), pages 3-23, October.
  13. James J. Heckman, 1989. "Choosing Among Alternative Nonexperimental Methods for Estimating the Impact of Social Programs: The Case of Manpower Training," NBER Working Papers 2861, National Bureau of Economic Research, Inc.
  14. Charles F. Manski, 1993. "The Mixing Problem in Program Evaluation," NBER Technical Working Papers 0148, National Bureau of Economic Research, Inc.
  15. Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
  16. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-79, July.
  17. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
  18. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
  19. Heckman, James J & Honore, Bo E, 1990. "The Empirical Content of the Roy Model," Econometrica, Econometric Society, vol. 58(5), pages 1121-49, September.
  20. Powell, James L, 1983. "The Asymptotic Normality of Two-Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 51(5), pages 1569-75, September.
  21. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
  22. Alberto Abadie & Joshua D. Angrist & Guido W. Imbens, 1998. "Instrumental Variables Estimation of Quantile Treatment Effects," NBER Technical Working Papers 0229, National Bureau of Economic Research, Inc.
  23. Imbens, Guido W & Rubin, Donald B, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," Review of Economic Studies, Wiley Blackwell, vol. 64(4), pages 555-74, October.
  24. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:75:y:2007:i:1:p:259-276. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.