Advanced Search
MyIDEAS: Login to save this article or follow this journal

Poverty Measures as Normalized Distance Functions


Author Info

  • Subramanian, S.

    (Madras Institute of Development Studies)

Registered author(s):


    One rather simple and straightforward way of interpreting a poverty measure is in terms of the ratio of the vector distance between, one the one hand, an actual distribution of incomes and an ideal distribution without any poverty, to the vector distance between a distribution representing complete poverty and the no-poverty distribution, on the other. One can derive alternative poverty measures, with alternative sets of properties, for alternative specifications of the relevant distance function. In this paper, two families of poverty measures have been derived, pursuing this ‘distance function interpretation’ of a poverty measure. One family is based on the Minkowski distance functions of order a, and the other family is based on a generalization of the Canberra distance function. The properties of these families of indices are reviewed, and their relationship with poverty measures that have already been advanced in the literature is identified. The paper aims to advance both a useful interpretation and a useful addition to the stock of known poverty measures.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Article provided by Department of Economics, Delhi School of Economics in its journal Indian Economic Review.

    Volume (Year): 44 (2009)
    Issue (Month): 2 ()
    Pages: 171-183

    as in new window
    Handle: RePEc:dse:indecr:0003

    Contact details of provider:
    Postal: University of Delhi, Delhi 110 007
    Phone: 91-11-2766-6533/34/35, 2766-6703/04/05
    Fax: +91-11-7667159
    Web page:
    More information through EDIRC

    Order Information:

    Related research

    Keywords: Distance Functions; Minkowski – a Distance; Canberra Distance; Poverty Measure; Inequality Measure; Axioms for Measurement;

    Find related papers by JEL classification:


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Subramanian, S., 2012. "On a Distance Function-Based Inequality Measure in the Spirit of the Bonferroni and Gini Indices," Working Paper Series UNU-WIDER Research Paper , World Institute for Development Economic Research (UNU-WIDER).


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:dse:indecr:0003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Pami Dua).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.