IDEAS home Printed from https://ideas.repec.org/a/cup/polals/v27y2019i01p69-89_00.html
   My bibliography  Save this article

A Multinomial Framework for Ideal Point Estimation

Author

Listed:
  • Goplerud, Max

Abstract

This paper creates a multinomial framework for ideal point estimation (mIRT) using recent developments in Bayesian statistics. The core model relies on a flexible multinomial specification that includes most common models in political science as “special cases.†I show that popular extensions (e.g., dynamic smoothing, inclusion of covariates, and network models) can be easily incorporated whilst maintaining the ability to estimate a model using a Gibbs Sampler or exact EM algorithm. By showing that these models can be written and estimated using a shared framework, the paper aims to reduce the proliferation of bespoke ideal point models as well as extend the ability of applied researchers to estimate models quickly using the EM algorithm. I apply this framework to a thorny question in scaling survey responses—the treatment of nonresponse. Focusing on the American National Election Study (ANES), I suggest that a simple but principled solution is to treat questions as multinomial where nonresponse is a distinct (modeled) category. The exploratory results suggest that certain questions tend to attract many more invalid answers and that many of these questions (particularly when signaling out particular social groups for evaluation) are masking noncentrist (typically conservative) beliefs.

Suggested Citation

  • Goplerud, Max, 2019. "A Multinomial Framework for Ideal Point Estimation," Political Analysis, Cambridge University Press, vol. 27(1), pages 69-89, January.
  • Handle: RePEc:cup:polals:v:27:y:2019:i:01:p:69-89_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1047198718000311/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuriwaki, Shiro, 2020. "A Clustering Approach for Characterizing Voter Types: An Application to High-Dimensional Ballot and Survey Data," OSF Preprints v3rhz, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:polals:v:27:y:2019:i:01:p:69-89_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/pan .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.