Advanced Search
MyIDEAS: Login to save this article or follow this journal

Empirical Characteristic Function In Time Series Estimation

Contents:

Author Info

  • Knight, John L.
  • Yu, Jun
Registered author(s):

Abstract

Because the empirical characteristic function (ECF) is the Fourier transform of the empirical distribution function, it retains all the information in the sample but can overcome difficulties arising from the likelihood. This paper discusses an estimation method via the ECF for strictly stationary processes. Under some regularity conditions, the resulting estimators are shown to be consistent and asymptotically normal. The method is applied to estimate the stable autoregressive moving average (ARMA) models. For the general stable ARMA model for which the maximum likelihood approach is not feasible, Monte Carlo evidence shows that the ECF method is a viable estimation method for all the parameters of interest. For the Gaussian ARMA model, a particular stable ARMA model, the optimal weight functions and estimating equations are given. Monte Carlo studies highlight the finite sample performances of the ECF method relative to the exact and conditional maximum likelihood methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://journals.cambridge.org/abstract_S026646660218306X
File Function: link to article abstract page
Download Restriction: no

Bibliographic Info

Article provided by Cambridge University Press in its journal Econometric Theory.

Volume (Year): 18 (2002)
Issue (Month): 03 (June)
Pages: 691-721

as in new window
Handle: RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18

Contact details of provider:
Postal: The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU UK
Fax: +44 (0)1223 325150
Web page: http://journals.cambridge.org/jid_ECTProvider-Email:journals@cambridge.org

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.