IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v54y2024i2p213-238_1.html
   My bibliography  Save this article

Machine Learning with High-Cardinality Categorical Features in Actuarial Applications

Author

Listed:
  • Avanzi, Benjamin
  • Taylor, Greg
  • Wang, Melantha
  • Wong, Bernard

Abstract

High-cardinality categorical features are pervasive in actuarial data (e.g., occupation in commercial property insurance). Standard categorical encoding methods like one-hot encoding are inadequate in these settings. In this work, we present a novel Generalised Linear Mixed Model Neural Network (“GLMMNet”) approach to the modelling of high-cardinality categorical features. The GLMMNet integrates a generalised linear mixed model in a deep learning framework, offering the predictive power of neural networks and the transparency of random effects estimates, the latter of which cannot be obtained from the entity embedding models. Further, its flexibility to deal with any distribution in the exponential dispersion (ED) family makes it widely applicable to many actuarial contexts and beyond. In order to facilitate the application of GLMMNet to large datasets, we use variational inference to estimate its parameters—both traditional mean field and versions utilising textual information underlying the high-cardinality categorical features. We illustrate and compare the GLMMNet against existing approaches in a range of simulation experiments as well as in a real-life insurance case study. A notable feature for both our simulation experiment and the real-life case study is a comparatively low signal-to-noise ratio, which is a feature common in actuarial applications. We find that the GLMMNet often outperforms or at least performs comparably with an entity-embedded neural network in these settings, while providing the additional benefit of transparency, which is particularly valuable in practical applications. Importantly, while our model was motivated by actuarial applications, it can have wider applicability. The GLMMNet would suit any applications that involve high-cardinality categorical variables and where the response cannot be sufficiently modelled by a Gaussian distribution, especially where the inherent noisiness of the data is relatively high.

Suggested Citation

  • Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2024. "Machine Learning with High-Cardinality Categorical Features in Actuarial Applications," ASTIN Bulletin, Cambridge University Press, vol. 54(2), pages 213-238, May.
  • Handle: RePEc:cup:astinb:v:54:y:2024:i:2:p:213-238_1
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036124000072/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:54:y:2024:i:2:p:213-238_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.