IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v51y2021i1p161-189_6.html
   My bibliography  Save this article

Mortality Forecasting With A Spatially Penalized Smoothed Var Model

Author

Listed:
  • Chang, Le
  • Shi, Yanlin

Abstract

This paper investigates a high-dimensional vector-autoregressive (VAR) model in mortality modeling and forecasting. We propose an extension of the sparse VAR (SVAR) model fitted on the log-mortality improvements, which we name “spatially penalized smoothed VAR” (SSVAR). By adaptively penalizing the coefficients based on the distances between ages, SSVAR not only allows a flexible data-driven sparsity structure of the coefficient matrix but simultaneously ensures interpretable coefficients including cohort effects. Moreover, by incorporating the smoothness penalties, divergence in forecast mortality rates of neighboring ages is largely reduced, compared with the existing SVAR model. A novel estimation approach that uses the accelerated proximal gradient algorithm is proposed to solve SSVAR efficiently. Similarly, we propose estimating the precision matrix of the residuals using a spatially penalized graphical Lasso to further study the dependency structure of the residuals. Using the UK and France population data, we demonstrate that the SSVAR model consistently outperforms the famous Lee–Carter, Hyndman–Ullah, and two VAR-type models in forecasting accuracy. Finally, we discuss the extension of the SSVAR model to multi-population mortality forecasting with an illustrative example that demonstrates its superiority in forecasting over existing approaches.

Suggested Citation

  • Chang, Le & Shi, Yanlin, 2021. "Mortality Forecasting With A Spatially Penalized Smoothed Var Model," ASTIN Bulletin, Cambridge University Press, vol. 51(1), pages 161-189, January.
  • Handle: RePEc:cup:astinb:v:51:y:2021:i:1:p:161-189_6
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000392/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
    2. Thilini Dulanjali Kularatne & Jackie Li & Yanlin Shi, 2022. "Forecasting Mortality Rates with a Two-Step LASSO Based Vector Autoregressive Model," Risks, MDPI, vol. 10(11), pages 1-23, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:51:y:2021:i:1:p:161-189_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.