IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i3p777-798_4.html
   My bibliography  Save this article

Testing For Random Effects In Compound Risk Models Via Bregman Divergence

Author

Listed:
  • Jeong, Himchan

Abstract

The generalized linear model (GLM) is a statistical model which has been widely used in actuarial practices, especially for insurance ratemaking. Due to the inherent longitudinality of property and casualty insurance claim datasets, there have been some trials of incorporating unobserved heterogeneity of each policyholder from the repeated observations. To achieve this goal, random effects models have been proposed, but theoretical discussions of the methods to test the presence of random effects in GLM framework are still scarce. In this article, the concept of Bregman divergence is explored, which has some good properties for statistical modeling and can be connected to diverse model selection diagnostics as in Goh and Dey [(2014) Journal of Multivariate Analysis, 124, 371–383]. We can apply model diagnostics derived from the Bregman divergence for testing robustness of a chosen prior by the modeler to possible misspecification of prior distribution both on the naive model, which assumes that random effects follow a point mass distribution as its prior distribution, and the proposed model, which assumes a continuous prior density of random effects. This approach provides insurance companies a concrete framework for testing the presence of nonconstant random effects in both claim frequency and severity and furthermore appropriate hierarchical model which can explain both observed and unobserved heterogeneity of the policyholders for insurance ratemaking. Both models are calibrated using a claim dataset from the Wisconsin Local Government Property Insurance Fund which includes both observed claim counts and amounts from a portfolio of policyholders.

Suggested Citation

  • Jeong, Himchan, 2020. "Testing For Random Effects In Compound Risk Models Via Bregman Divergence," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 777-798, September.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:777-798_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000197/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Himchan Jeong & Dipak Dey, 2020. "Application of a Vine Copula for Multi-Line Insurance Reserving," Risks, MDPI, vol. 8(4), pages 1-23, October.
    2. Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
    3. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    4. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:3:p:777-798_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.