IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i2p585-618_9.html
   My bibliography  Save this article

Poisson Models With Dynamic Random Effects And Nonnegative Credibilities Per Period

Author

Listed:
  • Pinquet, Jean

Abstract

This paper provides a toolbox for the credibility analysis of frequency risks, with allowance for the seniority of claims and of risk exposure. We use Poisson models with dynamic and second-order stationary random effects that ensure nonnegative credibilities per period. We specify classes of autocovariance functions that are compatible with positive random effects and that entail nonnegative credibilities regardless of the risk exposure. Random effects with nonnegative generalized partial autocorrelations are shown to imply nonnegative credibilities. This holds for ARFIMA(0, d, 0) models. The AR(p) time series that ensure nonnegative credibilities are specified from their precision matrices. The compatibility of these semiparametric models with log-Gaussian random effects is verified. Gaussian sequences with ARFIMA(0, d, 0) specifications, which are then exponentiated entrywise, provide positive random effects that also imply nonnegative credibilities. Dynamic random effects applied to Poisson distributions are retained as products of two uncorrelated and positive components: the first is time-invariant, whereas the autocovariance function of the second vanishes at infinity and ensures nonnegative credibilities. The limit credibility is related to the three levels for the length of the memory in the random effects. The limit credibility is less than one in the short memory case, and a formula is provided.

Suggested Citation

  • Pinquet, Jean, 2020. "Poisson Models With Dynamic Random Effects And Nonnegative Credibilities Per Period," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 585-618, May.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:585-618_9
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036120000045/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    2. Youn Ahn, Jae & Jeong, Himchan & Lu, Yang, 2021. "On the ordering of credibility factors," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 626-638.
    3. Pinquet, Jean, 2020. "Positivity properties of the ARFIMA(0,d,0) specifications and credibility analysis of frequency risks," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 159-165.
    4. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    5. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:2:p:585-618_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.