IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v50y2020i1p25-60_2.html
   My bibliography  Save this article

A Neural Network Boosted Double Overdispersed Poisson Claims Reserving Model

Author

Listed:
  • Gabrielli, Andrea

Abstract

We present an actuarial claims reserving technique that takes into account both claim counts and claim amounts. Separate (overdispersed) Poisson models for the claim counts and the claim amounts are combined by a joint embedding into a neural network architecture. As starting point of the neural network calibration, we use exactly these two separate (overdispersed) Poisson models. Such a nested model can be interpreted as a boosting machine. It allows us for joint modeling and mutual learning of claim counts and claim amounts beyond the two individual (overdispersed) Poisson models.

Suggested Citation

  • Gabrielli, Andrea, 2020. "A Neural Network Boosted Double Overdispersed Poisson Claims Reserving Model," ASTIN Bulletin, Cambridge University Press, vol. 50(1), pages 25-60, January.
  • Handle: RePEc:cup:astinb:v:50:y:2020:i:1:p:25-60_2
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036119000333/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Feb 2024.
    2. Muhammed Taher Al-Mudafer & Benjamin Avanzi & Greg Taylor & Bernard Wong, 2021. "Stochastic loss reserving with mixture density neural networks," Papers 2108.07924, arXiv.org.
    3. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    4. Mark Kiermayer & Christian Wei{ss}, 2022. "Neural calibration of hidden inhomogeneous Markov chains -- Information decompression in life insurance," Papers 2201.02397, arXiv.org.
    5. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    6. Bladt, Martin & Yslas, Jorge, 2023. "Robust claim frequency modeling through phase-type mixture-of-experts regression," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 1-22.
    7. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    8. Qiqi Wang & Katja Hanewald & Xiaojun Wang, 2022. "Multistate health transition modeling using neural networks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(2), pages 475-504, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:50:y:2020:i:1:p:25-60_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.