IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v34y2004i02p361-377_01.html
   My bibliography  Save this article

Risk Theory with the Generalized Inverse Gaussian Lévy Process

Author

Listed:
  • Morales, Manuel

Abstract

Dufresne et al. (1991) introduced a general risk model defined as the limit of compound Poisson processes. Such model is either a compound Poisson process itself or a strictly increasing Lévy process. Their construction is based on a non-negative non-increasing function Q that governs the jumps of the process. This function, it turns out, is the tail of the Lévy measure of the process. We discuss an illustration of their model using a generalized Inverse Gaussian (GIG) Lévy process. This increasing Lévy process has the gamma and the inverse Gaussian process as particular cases. Although mathematically more complex, the GIG Lévy process keeps some of the nice properties of the simpler gamma process.

Suggested Citation

  • Morales, Manuel, 2004. "Risk Theory with the Generalized Inverse Gaussian Lévy Process," ASTIN Bulletin, Cambridge University Press, vol. 34(2), pages 361-377, November.
  • Handle: RePEc:cup:astinb:v:34:y:2004:i:02:p:361-377_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100013738/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    2. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    3. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    4. Griffin, Philip S. & Maller, Ross A. & Roberts, Dale, 2013. "Finite time ruin probabilities for tempered stable insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 478-489.
    5. Shimizu, Yasutaka & Zhang, Zhimin, 2017. "Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 84-98.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:34:y:2004:i:02:p:361-377_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.