IDEAS home Printed from https://ideas.repec.org/a/cup/anacsi/v15y2021i1p82-114_5.html
   My bibliography  Save this article

Home and Motor insurance joined at a household level using multivariate credibility

Author

Listed:
  • Pechon, Florian
  • Denuit, Michel
  • Trufin, Julien

Abstract

Actuarial ratemaking is usually performed at product and guarantee level, meaning that each product and guarantee is considered in isolation. Moreover, independence between policyholders is generally assumed. In this paper, we propose a multivariate Poisson mixture, with random effects correlated using a hierarchical structure, to accommodate for the dependence that may exist between unobserved risk factors across Home and Motor insurance and between policyholders from the same household. The hierarchical structure accounts for the fact that Home insurance covers the whole household, whereas Motor insurance policies are subscribed by specific policyholders within the household. The model allows to periodically correct the a priori expected claim frequencies using the reported number of claims in any of the considered products. Applications show that the impact of the number of claims reported in Motor insurance on the number of claims expected in Home insurance is larger than the other way around. Moreover, an out-of-sample analysis validates an improved predictive power. Also, the model allows to identify more rapidly the riskiest households.

Suggested Citation

  • Pechon, Florian & Denuit, Michel & Trufin, Julien, 2021. "Home and Motor insurance joined at a household level using multivariate credibility," Annals of Actuarial Science, Cambridge University Press, vol. 15(1), pages 82-114, March.
  • Handle: RePEc:cup:anacsi:v:15:y:2021:i:1:p:82-114_5
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1748499520000160/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Tzougas & Despoina Makariou, 2022. "The multivariate Poisson‐Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(4), pages 401-417, December.
    2. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.
    3. Raphael Iten & Joël Wagner & Angela Zeier Röschmann, 2021. "On the Identification, Evaluation and Treatment of Risks in Smart Homes: A Systematic Literature Review," Risks, MDPI, vol. 9(6), pages 1-30, June.
    4. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    5. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:anacsi:v:15:y:2021:i:1:p:82-114_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aas .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.