IDEAS home Printed from https://ideas.repec.org/a/caa/jnlswr/v17y2022i1id60-2021-swr.html
   My bibliography  Save this article

The influence of Shewanella oneidensis MR-1 on the transformation of iron oxides and phosphorus in a red soil

Author

Listed:
  • Weimin Yu

    (National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, P.R. China)

  • Rongping Wang
  • Rongyun Linghu

    (National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, P.R. China)

  • Jiawei Liang

    (National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, P.R. China)

  • Qiqi Hu

    (National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, P.R. China)

  • Yuling Yao

    (National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, P.R. China)

Abstract

In this study, Shewanella oneidensis MR-1, an iron (Fe)-reducing bacterium, was inoculated to a red soil, which was then incubated. Soil samples were taken regularly to analyse the variation of iron oxides and phosphorus (P) fractions. The results showed that the MR-1 inoculation increased the content of the free iron oxides, but decreased the activity of the iron oxides in the soil, and had no significant influence on the amorphous iron oxides. The MR-1 inoculation increased the resin-P and residual-P, decreased the NaHCO3-extracted inorganic P (NaHCO3-Pi) and NaOH-extracted inorganic P (NaOH-Pi), but did not significantly influence the diluted HCl-extracted inorganic P (D.HCl-Pi) and concentrated HCl-extracted inorganic P (C.HCl-Pi). The presence of MR-1 influenced the correlation between the free iron oxides and NaOH-Pi. In the CK where deactivated MR-1 was applied, there was a significant positive correlation between the free iron oxides and the NaOH-Pi; in the treatment with the live MR-1 inoculation, there was no correlation between them. In addition, there was a significant positive correlation between the free iron oxides and the C.HCl-Pi, and there was a significant negative correlation between the NaHCO3-Pi, resin-P, and residual-P. Therefore, the MR-1 inoculation improved the P availability by decreasing the activity of the iron oxides and consequently improved the P use efficiency in the red soil.

Suggested Citation

  • Weimin Yu & Rongping Wang & Rongyun Linghu & Jiawei Liang & Qiqi Hu & Yuling Yao, 2022. "The influence of Shewanella oneidensis MR-1 on the transformation of iron oxides and phosphorus in a red soil," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 59-68.
  • Handle: RePEc:caa:jnlswr:v:17:y:2022:i:1:id:60-2021-swr
    DOI: 10.17221/60/2021-SWR
    as

    Download full text from publisher

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/60/2021-SWR.html
    Download Restriction: free of charge

    File URL: http://swr.agriculturejournals.cz/doi/10.17221/60/2021-SWR.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/60/2021-SWR?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlswr:v:17:y:2022:i:1:id:60-2021-swr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.