IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v4y2005i1n18.html
   My bibliography  Save this article

Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm

Author

Listed:
  • Hobolth Asger

    (Bioinformatics Research Center, University of Aarhus, Denmark)

  • Jensen Jens Ledet

    (Department of Theoretical Statistics, University of Aarhus, Denmark)

Abstract

We describe statistical inference in continuous time Markov processes of DNA sequences related by a phylogenetic tree. The maximum likelihood estimator can be found by the expectation maximization (EM) algorithm and an expression for the information matrix is also derived. We provide explicit analytical solutions for the EM algorithm and information matrix.

Suggested Citation

  • Hobolth Asger & Jensen Jens Ledet, 2005. "Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-22, August.
  • Handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:18
    DOI: 10.2202/1544-6115.1127
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1127
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hobolth, Asger & Siren, Jukka, 2016. "The multivariate Wright–Fisher process with mutation: Moment-based analysis and inference using a hierarchical Beta model," Theoretical Population Biology, Elsevier, vol. 108(C), pages 36-50.
    2. Alexander Kremer & Rafael Weißbach, 2013. "Consistent estimation for discretely observed Markov jump processes with an absorbing state," Statistical Papers, Springer, vol. 54(4), pages 993-1007, November.
    3. Nils Lid Hjort & Cristiano Varin, 2008. "ML, PL, QL in Markov Chain Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(1), pages 64-82, March.
    4. Zheng Wei & Zhao Hongyu, 2013. "Studying the evolution of transcription factor binding events using multi-species ChIP-Seq data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:4:y:2005:i:1:n:18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.