IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v15y2019i2p27n3.html
   My bibliography  Save this article

Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study

Author

Listed:
  • Tran Linh

    (Department of Biostatistics, University of California Berkeley, Berkeley, CA, USA)

  • Yiannoutsos Constantin

    (Department of Biostatistics, Indiana University Richard M Fairbanks School of Public Health, Indianapolis, IN, USA)

  • Wools-Kaloustian Kara

    (Infectious Diseases, Howard Hughes Medical Institute - Indiana University School of Medicine, Indianapolis, IN, USA)

  • Siika Abraham

    (Moi University, Eldoret, Kenya)

  • van der Laan Mark
  • Petersen Maya

    (University of California at Berkeley, Berkeley, CAUSA)

Abstract

A number of sophisticated estimators of longitudinal effects have been proposed for estimating the intervention-specific mean outcome. However, there is a relative paucity of research comparing these methods directly to one another. In this study, we compare various approaches to estimating a causal effect in a longitudinal treatment setting using both simulated data and data measured from a human immunodeficiency virus cohort. Six distinct estimators are considered: (i) an iterated conditional expectation representation, (ii) an inverse propensity weighted method, (iii) an augmented inverse propensity weighted method, (iv) a double robust iterated conditional expectation estimator, (v) a modified version of the double robust iterated conditional expectation estimator, and (vi) a targeted minimum loss-based estimator. The details of each estimator and its implementation are presented along with nuisance parameter estimation details, which include potentially pooling the observed data across all subjects regardless of treatment history and using data adaptive machine learning algorithms. Simulations are constructed over six time points, with each time point steadily increasing in positivity violations. Estimation is carried out for both the simulations and applied example using each of the six estimators under both stratified and pooled approaches of nuisance parameter estimation. Simulation results show that double robust estimators remained without meaningful bias as long as at least one of the two nuisance parameters were estimated with a correctly specified model. Under full misspecification, the bias of the double robust estimators remained better than that of the inverse propensity estimator under misspecification, but worse than the iterated conditional expectation estimator. Weighted estimators tended to show better performance than the covariate estimators. As positivity violations increased, the mean squared error and bias of all estimators considered became worse, with covariate-based double robust estimators especially susceptible. Applied analyses showed similar estimates at most time points, with the important exception of the inverse propensity estimator which deviated markedly as positivity violations increased. Given its efficiency, ability to respect the parameter space, and observed performance, we recommend the pooled and weighted targeted minimum loss-based estimator.

Suggested Citation

  • Tran Linh & Yiannoutsos Constantin & Wools-Kaloustian Kara & Siika Abraham & van der Laan Mark & Petersen Maya, 2019. "Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study," The International Journal of Biostatistics, De Gruyter, vol. 15(2), pages 1-27, November.
  • Handle: RePEc:bpj:ijbist:v:15:y:2019:i:2:p:27:n:3
    DOI: 10.1515/ijb-2017-0054
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2017-0054
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2017-0054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    2. Philipp Baumann & Enzo Rossi & Michael Schomaker, 2022. "Estimating the effect of central bank independence on inflation using longitudinal targeted maximum likelihood estimation," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Machine learning in central banking, volume 57, Bank for International Settlements.
    3. Lan Wen & Jessica G. Young & James M. Robins & Miguel A. Hernán, 2021. "Parametric g‐formula implementations for causal survival analyses," Biometrics, The International Biometric Society, vol. 77(2), pages 740-753, June.
    4. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    5. Lan Wen & Miguel A. Hernán & James M. Robins, 2022. "Multiply robust estimators of causal effects for survival outcomes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1304-1328, September.
    6. Audrey Renson & Michael G. Hudgens & Alexander P. Keil & Paul N. Zivich & Allison E. Aiello, 2023. "Identifying and estimating effects of sustained interventions under parallel trends assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 2998-3009, December.
    7. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    8. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "RieszNet and ForestRiesz: Automatic Debiased Machine Learning with Neural Nets and Random Forests," Papers 2110.03031, arXiv.org, revised Jun 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:15:y:2019:i:2:p:27:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.