IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v11y2015i1p69-89n7.html
   My bibliography  Save this article

Double Bias: Estimation of Causal Effects from Length-Biased Samples in the Presence of Confounding

Author

Listed:
  • Ertefaie Ashkan

    (Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA)

  • Asgharian Masoud
  • Stephens David A.

    (Department of Mathematics and Statistics, McGill University, Montréal, QC, Canada)

Abstract

Length bias in survival data occurs in observational studies when, for example, subjects with shorter lifetimes are less likely to be present in the recorded data. In this paper, we consider estimating the causal exposure (treatment) effect on survival time from observational data when, in addition to the lack of randomization and consequent potential for confounding, the data constitute a length-biased sample; we hence term this a double-bias problem. We develop estimating equations that can be used to estimate the causal effect indexing the structural Cox proportional hazard and accelerated failure time models for point exposures in double-bias settings. The approaches rely on propensity score-based adjustments, and we demonstrate that estimation of the propensity score must be adjusted to acknowledge the length-biased sampling. Large sample properties of the estimators are established and their small sample behavior is studied using simulations. We apply the proposed methods to a set of, partly synthesized, length-biased survival data collected as part of the Canadian Study of Health and Aging (CSHA) to compare survival of subjects with dementia among institutionalized patients versus those recruited from the community and depict their adjusted survival curves.

Suggested Citation

  • Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2015. "Double Bias: Estimation of Causal Effects from Length-Biased Samples in the Presence of Confounding," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 69-89, May.
  • Handle: RePEc:bpj:ijbist:v:11:y:2015:i:1:p:69-89:n:7
    DOI: 10.1515/ijb-2014-0037
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2014-0037
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2014-0037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaodong Luo & Wei Yann Tsai, 2009. "Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach," Biometrika, Biometrika Trust, vol. 96(4), pages 873-886.
    2. Bergeron, Pierre-Jerome & Asgharian, Masoud & Wolfson, David B., 2008. "Covariate Bias Induced by Length-Biased Sampling of Failure Times," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 737-742, June.
    3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    4. Xiaodong Luo & Wei Yann Tsai & Qiang Xu, 2009. "Pseudo-partial likelihood estimators for the Cox regression model with missing covariates," Biometrika, Biometrika Trust, vol. 96(3), pages 617-633.
    5. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
    6. Qi, Lihong & Wang, C.Y. & Prentice, Ross L., 2005. "Weighted Estimators for Proportional Hazards Regression With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1250-1263, December.
    7. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
    2. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    3. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2012. "Estimating Incident Population Distribution from Prevalent Data," Biometrics, The International Biometric Society, vol. 68(2), pages 521-531, June.
    4. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    5. Shanshan Li & Yang Ning, 2015. "Estimation of covariate‐specific time‐dependent ROC curves in the presence of missing biomarkers," Biometrics, The International Biometric Society, vol. 71(3), pages 666-676, September.
    6. Jacobo Uña-Álvarez, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 414-418, September.
    7. Xiaolin Chen & Jianwen Cai, 2018. "Reweighted estimators for additive hazard model with censoring indicators missing at random," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 224-249, April.
    8. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    9. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    10. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    11. Na Hu & Xuerong Chen & Jianguo Sun, 2015. "Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 438-452, June.
    12. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    13. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    14. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    16. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    17. Torben Martinussen & Klaus K. Holst & Thomas H. Scheike, 2016. "Cox regression with missing covariate data using a modified partial likelihood method," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(4), pages 570-588, October.
    18. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    19. Gunther Bensch & Jörg Peters, 2013. "Alleviating Deforestation Pressures? Impacts of Improved Stove Dissemination on Charcoal Consumption in Urban Senegal," Land Economics, University of Wisconsin Press, vol. 89(4), pages 676-698.
    20. Leonardo Becchetti & Pierluigi Conzo & Alessandro Romeo, 2014. "Violence, trust, and trustworthiness: evidence from a Nairobi slum," Oxford Economic Papers, Oxford University Press, vol. 66(1), pages 283-305, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:11:y:2015:i:1:p:69-89:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.