IDEAS home Printed from https://ideas.repec.org/a/bot/rivsta/v80y2020i4p357-394.html
   My bibliography  Save this article

Revisiting the Canadian Lynx Time Series Analysis Through TARMA Models

Author

Listed:
  • Greta Goracci

    (University of Bologna)

Abstract

The class of threshold autoregressive models has been proven to be a powerful and appropriate tool to describe many dynamical phenomena in different fields. In this work, we deploy the threshold autoregressive moving-average framework to revisit the analysis of the benchmark Canadian lynx time series. This data set has attracted great attention among non-linear time series analysts due to its asymmetric cycle that makes the investigation very challenging. We compare some of the best threshold autoregressive models (TAR) proposed in literature with a selection of threshold autoregressive moving-average models (TARMA). The models are compared under different prospectives: (i) goodness-of-fit through information criteria, (ii) their ability to reproduce characteristic cycles, (iv) their capability to capture multimodality and (iii) forecasting performance. We found TARMA models that perform better than TAR models with respect to all these aspects.

Suggested Citation

  • Greta Goracci, 2020. "Revisiting the Canadian Lynx Time Series Analysis Through TARMA Models," Statistica, Department of Statistics, University of Bologna, vol. 80(4), pages 357-394.
  • Handle: RePEc:bot:rivsta:v:80:y:2020:i:4:p:357-394
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:rivsta:v:80:y:2020:i:4:p:357-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanna Galatà (email available below). General contact details of provider: https://edirc.repec.org/data/dsbolit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.