IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i3p307-327.html
   My bibliography  Save this article

Segmenting bacterial and viral DNA sequence alignments with a trans‐dimensional phylogenetic factorial hidden Markov model

Author

Listed:
  • Wolfgang P. Lehrach
  • Dirk Husmeier

Abstract

Summary. The traditional approach to phylogenetic inference assumes that a single phylogenetic tree can represent the relationships and divergence between the taxa. However, taxa sequences exhibit varying levels of conservation, e.g. because of regulatory elements and active binding sites. Also, certain bacteria and viruses undergo interspecific recombination, where different strains exchange or transfer DNA subsequences, leading to a tree topology change. We propose a phylogenetic factorial hidden Markov model to detect recombination and rate variation simultaneously. This is applied to two DNA sequence alignments: one bacterial (Neisseria) and another of type 1 human immunodeficiency virus. Inference is carried out in the Bayesian framework, using reversible jump Markov chain Monte Carlo sampling.

Suggested Citation

  • Wolfgang P. Lehrach & Dirk Husmeier, 2009. "Segmenting bacterial and viral DNA sequence alignments with a trans‐dimensional phylogenetic factorial hidden Markov model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(3), pages 307-327, July.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:3:p:307-327
    DOI: 10.1111/j.1467-9876.2008.00648.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2008.00648.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2008.00648.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suchard M.A. & Weiss R.E. & Dorman K.S. & Sinsheimer J.S., 2003. "Inferring Spatial Phylogenetic Variation Along Nucleotide Sequences: A Multiple Changepoint Model," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 427-437, January.
    2. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    3. R. J. Boys & D. A. Henderson & D. J. Wilkinson, 2000. "Detecting homogeneous segments in DNA sequences by using hidden Markov models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 269-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amirali Kani & Wayne S. DeSarbo & Duncan K. H. Fong, 2018. "A Factorial Hidden Markov Model for the Analysis of Temporal Change in Choice Models," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(3), pages 162-177, December.
    2. Husmeier Dirk & Mantzaris Alexander V., 2008. "Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-41, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Husmeier Dirk & Mantzaris Alexander V., 2008. "Addressing the Shortcomings of Three Recent Bayesian Methods for Detecting Interspecific Recombination in DNA Sequence Alignments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-41, November.
    2. Nur, Darfiana & Allingham, David & Rousseau, Judith & Mengersen, Kerrie L. & McVinish, Ross, 2009. "Bayesian hidden Markov model for DNA sequence segmentation: A prior sensitivity analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1873-1882, March.
    3. Hilary S. Booth & Conrad J. Burden & John H. Maindonald & Lucia Santoso & Matthew J. Wakefield & Susan R. Wilson, 2005. "Discussion of “A Bayesian Approach to DNA Sequence Segmentation”," Biometrics, The International Biometric Society, vol. 61(2), pages 635-637, June.
    4. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    5. Gong Chen & Qing Zhou, 2010. "Heterogeneity in DNA Multiple Alignments: Modeling, Inference, and Applications in Motif Finding," Biometrics, The International Biometric Society, vol. 66(3), pages 694-704, September.
    6. R. J. Boys & D. A. Henderson, 2005. "Discussion of "A Bayesian Approach to DNA Sequence Segmentation "," Biometrics, The International Biometric Society, vol. 61(2), pages 637-639, June.
    7. Andreas C. Georgiou & Alexandra Papadopoulou & Pavlos Kolias & Haris Palikrousis & Evanthia Farmakioti, 2021. "On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-Markov Chains," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    8. Nasroallah Abdelaziz & Elkimakh Karima, 2017. "HMM with emission process resulting from a special combination of independent Markovian emissions," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 287-306, December.
    9. Elkimakh Karima & Nasroallah Abdelaziz, 2020. "Hidden Markov Model with Markovian emission," Monte Carlo Methods and Applications, De Gruyter, vol. 26(4), pages 303-313, December.
    10. Luigi Spezia, 2010. "Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 1-11, January.
    11. Yu Chuan Tai & Mark N. Kvale & John S. Witte, 2010. "Segmentation and Estimation for SNP Microarrays: A Bayesian Multiple Change-Point Approach," Biometrics, The International Biometric Society, vol. 66(3), pages 675-683, September.
    12. Rolando de la Cruz & Cristian Meza & Nicolás Narria & Claudio Fuentes, 2022. "A Bayesian Change Point Analysis of the USD/CLP Series in Chile from 2018 to 2020: Understanding the Impact of Social Protests and the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    13. Castro, Bruno M. & Lemes, Renan B. & Cesar, Jonatas & Hünemeier, Tábita & Leonardi, Florencia, 2018. "A model selection approach for multiple sequence segmentation and dimensionality reduction," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 319-330.
    14. Wilkinson, Darren J & KH Yeung, Stephen, 2004. "A sparse matrix approach to Bayesian computation in large linear models," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 493-516, January.
    15. Richard J. Boys & Daniel A. Henderson, 2004. "A Bayesian Approach to DNA Sequence Segmentation," Biometrics, The International Biometric Society, vol. 60(3), pages 573-581, September.
    16. Chi Peter B. & Chattopadhyay Sujay & Sokurenko Evgeni V. & Lemey Philippe & Minin Vladimir N., 2015. "Synonymous and nonsynonymous distances help untangle convergent evolution and recombination," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 375-389, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:3:p:307-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.