Advanced Search
MyIDEAS: Login

Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods

Contents:

Author Info

  • Alexander Morton
  • Bärbel F. Finkenstädt
Registered author(s):

    Abstract

    A stochastic discrete time version of the susceptible-infected-recovered model for infectious diseases is developed. Disease is transmitted within and between communities when infected and susceptible individuals interact. Markov chain Monte Carlo methods are used to make inference about these unobserved populations and the unknown parameters of interest. The algorithm is designed specifically for modelling time series of reported measles cases although it can be adapted for other infectious diseases with permanent immunity. The application to observed measles incidence series motivates extensions to incorporate age structure as well as spatial epidemic coupling between communities. Copyright 2005 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2005.05366.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society Series C.

    Volume (Year): 54 (2005)
    Issue (Month): 3 ()
    Pages: 575-594

    as in new window
    Handle: RePEc:bla:jorssc:v:54:y:2005:i:3:p:575-594

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssc
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9876&doi=10.1111/(ISSN)1467-9876

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2008. "Model-based measurement of latent risk in time series with applications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 265-277.
    2. Frits Bijleveld & Jacques Commandeur & Phillip Gould & Siem Jan Koopman, 2005. "Model-based Measurement of Latent Risk in Time Series with Applications," Tinbergen Institute Discussion Papers 05-118/4, Tinbergen Institute.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:54:y:2005:i:3:p:575-594. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.