Advanced Search
MyIDEAS: Login

Minimum distance estimation of the distribution functions of stochastically ordered random variables

Contents:

Author Info

  • Ronald E. Gangnon
  • William N. King
Registered author(s):

    Abstract

    Stochastic ordering of distributions can be a natural and minimal restriction in an estimation problem. Such restrictions occur naturally in several settings in medical research. The standard estimator in such settings is the nonparametric maximum likelihood estimator (NPMLE). The NPMLE is known to be biased, and, even when the empirical cumulative distribution functions nearly satisfy the stochastic orderings, the NPMLE and the empirical cumulative distribution functions may differ substantially. In many settings, this can make the NPMLE seem to be an unappealing estimator. As an alternative to the NPMLE, we propose a minimum distance estimator of distribution functions subject to stochastic ordering constraints. Consistency of the minimum distance estimator is proved, and superior performance is demonstrated through a simulation study. We demonstrate the use of the methodology to assess the reproducibility of gradings of nuclear sclerosis from fundus photographs. Copyright 2002 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/1467-9876.00282
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series C (Applied Statistics).

    Volume (Year): 51 (2002)
    Issue (Month): 4 ()
    Pages: 485-492

    as in new window
    Handle: RePEc:bla:jorssc:v:51:y:2002:i:4:p:485-492

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssc
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9876&doi=10.1111/(ISSN)1467-9876

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, EconWPA, revised 07 Aug 2005.
    2. Karabatsos, George & Walker, Stephen G., 2007. "Bayesian nonparametric inference of stochastically ordered distributions, with PĆ³lya trees and Bernstein polynomials," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 907-913, May.
    3. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Convexification of Stochastic Ordering," GE, Growth, Math methods 0402005, EconWPA, revised 05 Aug 2005.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:51:y:2002:i:4:p:485-492. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.