IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i1p108-132.html
   My bibliography  Save this article

Smoothing splines on Riemannian manifolds, with applications to 3D shape space

Author

Listed:
  • Kwang‐Rae Kim
  • Ian L. Dryden
  • Huiling Le
  • Katie E. Severn

Abstract

There has been increasing interest in statistical analysis of data lying in manifolds. This paper generalizes a smoothing spline fitting method to Riemannian manifold data based on the technique of unrolling, unwrapping and wrapping originally proposed by Jupp and Kent for spherical data. In particular, we develop such a fitting procedure for shapes of configurations in general m‐dimensional Euclidean space, extending our previous work for two‐dimensional shapes. We show that parallel transport along a geodesic on Kendall shape space is linked to the solution of a homogeneous first‐order differential equation, some of whose coefficients are implicitly defined functions. This finding enables us to approximate the procedure of unrolling and unwrapping by simultaneously solving such equations numerically, and so to find numerical solutions for smoothing splines fitted to higher dimensional shape data. This fitting method is applied to the analysis of some dynamic 3D peptide data.

Suggested Citation

  • Kwang‐Rae Kim & Ian L. Dryden & Huiling Le & Katie E. Severn, 2021. "Smoothing splines on Riemannian manifolds, with applications to 3D shape space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 108-132, February.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:108-132
    DOI: 10.1111/rssb.12402
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12402
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alfred Kume & Ian L. Dryden & Huiling Le, 2007. "Shape-space smoothing splines for planar landmark data," Biometrika, Biometrika Trust, vol. 94(3), pages 513-528.
    2. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.
    3. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    4. Zhu, Hongtu & Chen, Yasheng & Ibrahim, Joseph G. & Li, Yimei & Hall, Colin & Lin, Weili, 2009. "Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1203-1212.
    5. Peter E. Jupp & John T. Kent, 1987. "Fitting Smooth Paths to Spherical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(1), pages 34-46, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerio Varano & Stefano Gabriele & Franco Milicchio & Stefan Shlager & Ian Dryden & Paolo Piras, 2022. "Geodesics in the TPS Space," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    2. García-Morales, Vladimir, 2021. "A constructive theory of shape," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.
    2. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    3. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    4. Fraiman, Ricardo & Gamboa, Fabrice & Moreno, Leonardo, 2019. "Connecting pairwise geodesic spheres by depth: DCOPS," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 81-94.
    5. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    6. Stephan F. Huckemann, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 71-75, March.
    7. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    8. Emil Cornea & Hongtu Zhu & Peter Kim & Joseph G. Ibrahim, 2017. "Regression models on Riemannian symmetric spaces," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 463-482, March.
    9. Hanna, Martin S. & Chang, Ted, 2000. "Fitting Smooth Histories to Rotation Data," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 47-61, October.
    10. Vic Patrangenaru & Yifang Deng, 2021. "Extrinsic Regression and Anti-Regression on Projective Shape Manifolds," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 629-646, June.
    11. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.
    12. Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
    13. García-Morales, Vladimir, 2021. "A constructive theory of shape," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Beran, Rudolf, 2016. "Nonparametric estimation of trend in directional data," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3808-3827.
    15. M. Moghimbeygi & M. Golalizadeh, 2017. "Longitudinal shape analysis by using the spherical coordinates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1282-1295, May.
    16. Krebs, Johannes & Rademacher, Daniel & von Sachs, Rainer, 2022. "Statistical inference for intrinsic wavelet estimators of SPD covariance matrices in a log-Euclidean manifold," LIDAM Discussion Papers ISBA 2022004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Bailly, Gabriel & von Sachs, Rainer, 2024. "Time-Varying Covariance Matrices Estimation by Nonlinear Wavelet Thresholding in a Log-Euclidean Riemannian Manifold," LIDAM Discussion Papers ISBA 2024004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.
    19. Samir, Chafik & Adouani, Ines, 2019. "C1 interpolating Bézier path on Riemannian manifolds, with applications to 3D shape space," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 371-384.
    20. Armin Schwartzman, 2016. "Lognormal Distributions and Geometric Averages of Symmetric Positive Definite Matrices," International Statistical Review, International Statistical Institute, vol. 84(3), pages 456-486, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:1:p:108-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.