IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v69y2007i1p3-29.html
   My bibliography  Save this article

Towards a coherent statistical framework for dense deformable template estimation

Author

Listed:
  • S. Allassonnière
  • Y. Amit
  • A. Trouvé

Abstract

Summary. The problem of estimating probabilistic deformable template models in the field of computer vision or of probabilistic atlases in the field of computational anatomy has not yet received a coherent statistical formulation and remains a challenge. We provide a careful definition and analysis of a well‐defined statistical model based on dense deformable templates for grey level images of deformable objects. We propose a rigorous Bayesian framework for which we prove asymptotic consistency of the maximum a posteriori estimate and which leads to an effective iterative estimation algorithm of the geometric and photometric parameters in the small sample setting. The model is extended to mixtures of finite numbers of such components leading to a fine description of the photometric and geometric variations of an object class. We illustrate some of the ideas with images of handwritten digits and apply the estimated models to classification through maximum likelihood.

Suggested Citation

  • S. Allassonnière & Y. Amit & A. Trouvé, 2007. "Towards a coherent statistical framework for dense deformable template estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 3-29, February.
  • Handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:3-29
    DOI: 10.1111/j.1467-9868.2007.00574.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00574.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00574.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maire, Florian & Moulines, Eric & Lefebvre, Sidonie, 2017. "Online EM for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 27-47.
    2. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    3. del Barrio, Eustasio & Gordaliza, Paula & Lescornel, Hélène & Loubes, Jean-Michel, 2019. "Central limit theorem and bootstrap procedure for Wasserstein’s variations with an application to structural relationships between distributions," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 341-362.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:1:p:3-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.