IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i5p1319-1334.html
   My bibliography  Save this article

Economic and environmental assessment of automotive plastic waste end‐of‐life options: Energy recovery versus chemical recycling

Author

Listed:
  • Christoph Stallkamp
  • Malte Hennig
  • Rebekka Volk
  • Frank Richter
  • Britta Bergfeldt
  • Salar Tavakkol
  • Frank Schultmann
  • Dieter Stapf

Abstract

Most automotive plastic waste (APW) is landfilled or used in energy recovery as it is unsuitable for high‐quality product mechanical recycling. Chemical recycling via pyrolysis offers a pathway toward closing the material loop by handling this heterogeneous waste and providing feedstock for producing virgin plastics. This study compares chemical recycling and energy recovery scenarios for APW regarding climate change impact and cumulative energy demand (CED), assessing potential environmental advantages. In addition, an economic assessment is conducted. In contrast to other studies, the assessments are based on pyrolysis experiments conducted with an actual waste fraction. Mass balances and product composition are reported. The experimental data is combined with literature data for up‐ and downstream processes for the assessment. Chemical recycling shows a lower net climate change impact (0.57 to 0.64 kg CO2e/kg waste input) and CED (3.38 to 4.41 MJ/kg waste input) than energy recovery (climate change impact: 1.17 to 1.25 kg CO2e/kg waste input; CED: 6.94 to 7.97 MJ/kg waste input), while energy recovery performs better economically (net processing cost of −0.05 to −0.02€/kg waste input) compared to chemical recycling (0.05 to 0.08€/kg waste input). However, chemical recycling keeps carbon in the material cycle contributing to a circular economy and reducing the dependence on fossil feedstocks. Therefore, an increasing circularity of APW through chemical recycling shows a conflict between economic and environmental objectives.

Suggested Citation

  • Christoph Stallkamp & Malte Hennig & Rebekka Volk & Frank Richter & Britta Bergfeldt & Salar Tavakkol & Frank Schultmann & Dieter Stapf, 2023. "Economic and environmental assessment of automotive plastic waste end‐of‐life options: Energy recovery versus chemical recycling," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1319-1334, October.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:5:p:1319-1334
    DOI: 10.1111/jiec.13416
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13416
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rebekka Volk & Christoph Stallkamp & Justus J. Steins & Savina Padumane Yogish & Richard C. Müller & Dieter Stapf & Frank Schultmann, 2021. "Techno‐economic assessment and comparison of different plastic recycling pathways: A German case study," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1318-1337, October.
    2. Jun Nakatani, 2014. "Life Cycle Inventory Analysis of Recycling: Mathematical and Graphical Frameworks," Sustainability, MDPI, vol. 6(9), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    2. Esra’a Amin Al-Athamin & Safwat Hemidat & Husam Al-Hamaiedeh & Salah H. Aljbour & Tayel El-Hasan & Abdallah Nassour, 2021. "A Techno-Economic Analysis of Sustainable Material Recovery Facilities: The Case of Al-Karak Solid Waste Sorting Plant, Jordan," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    3. Max Rehberger & Michael Hiete, 2020. "Allocation of Environmental Impacts in Circular and Cascade Use of Resources—Incentive-Driven Allocation as a Prerequisite for Cascade Persistence," Sustainability, MDPI, vol. 12(11), pages 1-28, May.
    4. Kristin Faye Olalo & Jun Nakatani & Tsuyoshi Fujita, 2022. "Optimal Process Network for Integrated Solid Waste Management in Davao City, Philippines," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    5. Huysman, Sofie & Debaveye, Sam & Schaubroeck, Thomas & Meester, Steven De & Ardente, Fulvio & Mathieux, Fabrice & Dewulf, Jo, 2015. "The recyclability benefit rate of closed-loop and open-loop systems: A case study on plastic recycling in Flanders," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 53-60.
    6. Aurelija Burinskienė & Olga Lingaitienė & Artūras Jakubavičius, 2022. "Core Elements Affecting the Circularity of Materials," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    7. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    8. Tan, Kai Qi & Ahmad, Mohd Azmier & Oh, Wen Da & Low, Siew Chun, 2023. "Valorization of hazardous plastic wastes into value-added resources by catalytic pyrolysis-gasification: A review of techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    9. Rajesh Mehta & Milad Golkaram & Jack T. W. E. Vogels & Tom Ligthart & Eugene Someren & Spela Ferjan & Jelmer Lennartz, 2023. "BEVSIM: Battery electric vehicle sustainability impact assessment model," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1266-1276, October.
    10. Carlos Ferreira & José Ribeiro & Roland Clift & Fausto Freire, 2019. "A Circular Economy Approach to Military Munitions: Valorization of Energetic Material from Ammunition Disposal through Incorporation in Civil Explosives," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    11. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:5:p:1319-1334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.