IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i3p1011-1023.html
   My bibliography  Save this article

Covariate‐driven factorization by thresholding for multiblock data

Author

Listed:
  • Xing Gao
  • Sungwon Lee
  • Gen Li
  • Sungkyu Jung

Abstract

Multiblock data, where multiple groups of variables from different sources are observed for a common set of subjects, are routinely collected in many areas of science. Methods for joint factorization of such multiblock data are being developed to explore the potentially joint variation structure of the data. While most of the existing work focuses on delineating joint components, shared across all data blocks, from individual components, which is only relevant to a single data block, we propose to model and estimate partially joint components across some, but not all, data blocks. If covariates, with potential multiblock structures, are available, then the components are further modeled to be driven by the covariate information. To estimate such a covariate‐driven, block‐structured factor model, we propose an iterative algorithm based on thresholding, by transforming the problem of signal segmentation into a grouped variable selection problem. The proposed factorization provides accurate estimation of individual and (partially) joint structures in multiblock data, as confirmed by simulation studies. In the analysis of a real multiblock genomic dataset from the Cancer Genome Atlas project, we demonstrate that the estimated block structures provide straightforward interpretation and facilitate subsequent analyses.

Suggested Citation

  • Xing Gao & Sungwon Lee & Gen Li & Sungkyu Jung, 2021. "Covariate‐driven factorization by thresholding for multiblock data," Biometrics, The International Biometric Society, vol. 77(3), pages 1011-1023, September.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:1011-1023
    DOI: 10.1111/biom.13352
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13352
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gen Li & Sungkyu Jung, 2017. "Incorporating covariates into integrated factor analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 73(4), pages 1433-1442, December.
    2. Irina Gaynanova & Gen Li, 2019. "Structural learning and integrative decomposition of multi‐view data," Biometrics, The International Biometric Society, vol. 75(4), pages 1121-1132, December.
    3. Xin Gao & Raymond J. Carroll, 2017. "Data integration with high dimensionality," Biometrika, Biometrika Trust, vol. 104(2), pages 251-272.
    4. Izenman, Alan Julian, 1975. "Reduced-rank regression for the multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 5(2), pages 248-264, June.
    5. Li, Gen & Yang, Dan & Nobel, Andrew B. & Shen, Haipeng, 2016. "Supervised singular value decomposition and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 7-17.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    7. Lisha Chen & Jianhua Z. Huang, 2012. "Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1533-1545, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    2. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    3. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
    4. Ziping Zhao & Daniel P. Palomar, 2018. "Sparse Reduced Rank Regression With Nonconvex Regularization," Papers 1803.07247, arXiv.org.
    5. Lian, Heng & Feng, Sanying & Zhao, Kaifeng, 2015. "Parametric and semiparametric reduced-rank regression with flexible sparsity," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 163-174.
    6. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    7. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    8. Fujikoshi, Yasunori & Sakurai, Tetsuro, 2016. "High-dimensional consistency of rank estimation criteria in multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 199-212.
    9. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.
    10. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    11. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    13. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    14. Luo, Ruiyan & Qi, Xin, 2017. "Signal extraction approach for sparse multivariate response regression," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 83-97.
    15. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    16. Lansangan, Joseph Ryan G. & Barrios, Erniel B., 2017. "Simultaneous dimension reduction and variable selection in modeling high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 242-256.
    17. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    18. Jung, Sungkyu, 2018. "Continuum directions for supervised dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 27-43.
    19. Shinya Sugawara, 2022. "What composes desirable formal at-home elder care? An analysis for multiple service combinations," The Japanese Economic Review, Springer, vol. 73(2), pages 373-402, April.
    20. Yiyuan She & Jiahui Shen & Chao Zhang, 2022. "Supervised multivariate learning with simultaneous feature auto‐grouping and dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 912-932, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:3:p:1011-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.