IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v64y2008i3p695-701.html
   My bibliography  Save this article

Bounds on Direct Effects in the Presence of Confounded Intermediate Variables

Author

Listed:
  • Zhihong Cai
  • Manabu Kuroki
  • Judea Pearl
  • Jin Tian

Abstract

Summary This article considers the problem of estimating the average controlled direct effect (ACDE) of a treatment on an outcome, in the presence of unmeasured confounders between an intermediate variable and the outcome. Such confounders render the direct effect unidentifiable even in cases where the total effect is unconfounded (hence identifiable). Kaufman et al. (2005, Statistics in Medicine24, 1683–1702) applied a linear programming software to find the minimum and maximum possible values of the ACDE for specific numerical data. In this article, we apply the symbolic Balke–Pearl (1997, Journal of the American Statistical Association92, 1171–1176) linear programming method to derive closed‐form formulas for the upper and lower bounds on the ACDE under various assumptions of monotonicity. These universal bounds enable clinical experimenters to assess the direct effect of treatment from observed data with minimum computational effort, and they further shed light on the sign of the direct effect and the accuracy of the assessments.

Suggested Citation

  • Zhihong Cai & Manabu Kuroki & Judea Pearl & Jin Tian, 2008. "Bounds on Direct Effects in the Presence of Confounded Intermediate Variables," Biometrics, The International Biometric Society, vol. 64(3), pages 695-701, September.
  • Handle: RePEc:bla:biomet:v:64:y:2008:i:3:p:695-701
    DOI: 10.1111/j.1541-0420.2007.00949.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1541-0420.2007.00949.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1541-0420.2007.00949.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yue Wang & Jeremy M. G. Taylor, 2002. "A Measure of the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 58(4), pages 803-812, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Li & D'esir'e K'edagni & Ismael Mourifi'e, 2020. "Discordant Relaxations of Misspecified Models," Papers 2012.11679, arXiv.org, revised Dec 2022.
    2. Jaffer M. Zaidi & Tyler J. VanderWeele, 2021. "On the identification of individual level pleiotropic, pure direct, and principal stratum direct effects without cross world assumptions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 881-907, September.
    3. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.
    4. Ting Ye & Luke Keele & Raiden Hasegawa & Dylan S. Small, 2020. "A Negative Correlation Strategy for Bracketing in Difference-in-Differences," Papers 2006.02423, arXiv.org, revised Jun 2022.
    5. Chiba, Yasutaka, 2010. "Estimating the principal stratum direct effect when the total effects are consistent between two standard populations," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 958-961, June.
    6. Bampasidou, Maria & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2011. "Unbundling the Degree Effect in a Job Training Program for Disadvantaged Youth," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103619, Agricultural and Applied Economics Association.
    7. Martin Huber & Lukáš Lafférs, 2022. "Bounds on direct and indirect effects under treatment/mediator endogeneity and outcome attrition," Econometric Reviews, Taylor & Francis Journals, vol. 41(10), pages 1141-1163, November.
    8. Sjölander Arvid, 2020. "A note on a sensitivity analysis for unmeasured confounding, and the related E-value," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 229-248, January.
    9. Mealli Fabrizia & Mattei Alessandra, 2012. "A Refreshing Account of Principal Stratification," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, April.
    10. Manabu Kuroki & Takahiro Hayashi, 2016. "On the Estimation Accuracy of Causal Effects using Supplementary Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 505-519, June.
    11. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    12. Chiba Yasutaka & Taguri Masataka, 2013. "Alternative Monotonicity Assumptions for Improving Bounds on Natural Direct Effects," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 235-249, July.
    13. Sjölander Arvid, 2020. "A note on a sensitivity analysis for unmeasured confounding, and the related E-value," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 229-248, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Zheng & Lei Liu, 2022. "Quantifying direct and indirect effect for longitudinal mediator and survival outcome using joint modeling approach," Biometrics, The International Biometric Society, vol. 78(3), pages 1233-1243, September.
    2. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    3. Debashis Ghosh, 2009. "On Assessing Surrogacy in a Single Trial Setting Using a Semicompeting Risks Paradigm," Biometrics, The International Biometric Society, vol. 65(2), pages 521-529, June.
    4. Debashis Ghosh, 2008. "Semiparametric Inference for Surrogate Endpoints with Bivariate Censored Data," Biometrics, The International Biometric Society, vol. 64(1), pages 149-156, March.
    5. Layla Parast & Tianxi Cai & Lu Tian, 2023. "Testing for heterogeneity in the utility of a surrogate marker," Biometrics, The International Biometric Society, vol. 79(2), pages 799-810, June.
    6. Manabu Kuroki, 2016. "The Identification of Direct and Indirect Effects in Studies with an Unmeasured Intermediate Variable," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 228-245, March.
    7. Jeremy M. G. Taylor & Yue Wang & Rodolphe Thiébaut, 2005. "Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker," Biometrics, The International Biometric Society, vol. 61(4), pages 1102-1111, December.
    8. Steffen Mickenautsch & Veerasamy Yengopal, 2013. "Validity of Sealant Retention as Surrogate for Caries Prevention – A Systematic Review," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    9. Layla Parast & Tianxi Cai & Lu Tian, 2021. "Evaluating multiple surrogate markers with censored data," Biometrics, The International Biometric Society, vol. 77(4), pages 1315-1327, December.
    10. Banerjee, Buddhananda & Biswas, Atanu, 2015. "Linear increment in efficiency with the inclusion of surrogate endpoint," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 102-108.
    11. Debashis Ghosh & Jeremy M. G. Taylor & Daniel J. Sargent, 2012. "Meta-analysis for Surrogacy: Accelerated Failure Time Models and Semicompeting Risks Modeling," Biometrics, The International Biometric Society, vol. 68(1), pages 226-232, March.
    12. Denis Agniel & Layla Parast, 2021. "Evaluation of longitudinal surrogate markers," Biometrics, The International Biometric Society, vol. 77(2), pages 477-489, June.
    13. John O'Quigley & Philippe Flandre, 2012. "Discussion by O'Quigley and Flandre," Biometrics, The International Biometric Society, vol. 68(1), pages 242-244, March.
    14. Yun Li & Jeremy M. G. Taylor & Roderick J. A. Little, 2011. "A Shrinkage Approach for Estimating a Treatment Effect Using Intermediate Biomarker Data in Clinical Trials," Biometrics, The International Biometric Society, vol. 67(4), pages 1434-1441, December.
    15. Rui Zhuang & Fan Xia & Yixin Wang & Ying-Qing Chen, 2022. "A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    16. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    17. Layla Parast & Tanya P. Garcia & Ross L. Prentice & Raymond J. Carroll, 2022. "Robust methods to correct for measurement error when evaluating a surrogate marker," Biometrics, The International Biometric Society, vol. 78(1), pages 9-23, March.
    18. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    19. Layla Parast & Lu Tian & Tianxi Cai, 2020. "Assessing the value of a censored surrogate outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 245-265, April.
    20. Xuan Wang & Layla Parast & Larry Han & Lu Tian & Tianxi Cai, 2023. "Robust approach to combining multiple markers to improve surrogacy," Biometrics, The International Biometric Society, vol. 79(2), pages 788-798, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:64:y:2008:i:3:p:695-701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.