IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i4p1161-1169.html
   My bibliography  Save this article

Augmented Designs to Assess Immune Response in Vaccine Trials

Author

Listed:
  • Dean Follmann

Abstract

No abstract is available for this item.

Suggested Citation

  • Dean Follmann, 2006. "Augmented Designs to Assess Immune Response in Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(4), pages 1161-1169, December.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1161-1169
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00569.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Donald B. Rubin, 1977. "Assignment to Treatment Group on the Basis of a Covariate," Journal of Educational and Behavioral Statistics, , vol. 2(1), pages 1-26, March.
    3. Peter B. Gilbert & Ronald J. Bosch & Michael G. Hudgens, 2003. "Sensitivity Analysis for the Assessment of Causal Vaccine Effects on Viral Load in HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 531-541, September.
    4. Vincent J. Carey & Carol J. Baker & Richard Platt, 2001. "Bayesian Inference on Protective Antibody Levels Using Case‐Control Data," Biometrics, The International Biometric Society, vol. 57(1), pages 135-142, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gilbert Peter B. & Hudgens Michael G. & Wolfson Julian, 2011. "Commentary on "Principal Stratification -- a Goal or a Tool?" by Judea Pearl," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-15, September.
    2. Gilbert Peter B. & Huang Ying & Gabriel Erin E. & Chan Ivan S.F., 2015. "Surrogate Endpoint Evaluation: Principal Stratification Criteria and the Prentice Definition," Journal of Causal Inference, De Gruyter, vol. 3(2), pages 157-175, September.
    3. Rui Zhuang & Ying Qing Chen, 2020. "Measuring Surrogacy in Clinical Research," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 295-323, December.
    4. Ying Huang, 2018. "Evaluating principal surrogate markers in vaccine trials in the presence of multiphase sampling," Biometrics, The International Biometric Society, vol. 74(1), pages 27-39, March.
    5. Ying Huang & Shibasish Dasgupta, 2019. "Likelihood-Based Methods for Assessing Principal Surrogate Endpoints in Vaccine Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 504-523, December.
    6. Erin E. Gabriel & Michael C. Sachs & Dean A. Follmann & Therese M‐L. Andersson, 2020. "A unified evaluation of differential vaccine efficacy," Biometrics, The International Biometric Society, vol. 76(4), pages 1053-1063, December.
    7. Tomer Hertz & Hasan Ahmed & David P Friedrich & Danilo R Casimiro & Steven G Self & Lawrence Corey & M Juliana McElrath & Susan Buchbinder & Helen Horton & Nicole Frahm & Michael N Robertson & Barney , 2013. "HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1," PLOS Pathogens, Public Library of Science, vol. 9(6), pages 1-14, June.
    8. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
    9. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1-17, September.
    10. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
    11. Julian Wolfson & Peter Gilbert, 2010. "Statistical Identifiability and the Surrogate Endpoint Problem, with Application to Vaccine Trials," Biometrics, The International Biometric Society, vol. 66(4), pages 1153-1161, December.
    12. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    13. Tyler J. VanderWeele, 2013. "Surrogate Measures and Consistent Surrogates," Biometrics, The International Biometric Society, vol. 69(3), pages 561-565, September.
    14. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
    15. Corwin M. Zigler & Thomas R. Belin, 2012. "A Bayesian Approach to Improved Estimation of Causal Effect Predictiveness for a Principal Surrogate Endpoint," Biometrics, The International Biometric Society, vol. 68(3), pages 922-932, September.
    16. Emily K. Roberts & Michael R. Elliott & Jeremy M. G. Taylor, 2023. "Solutions for surrogacy validation with longitudinal outcomes for a gene therapy," Biometrics, The International Biometric Society, vol. 79(3), pages 1840-1852, September.
    17. Peter B. Gilbert & Michael G. Hudgens, 2008. "Evaluating Candidate Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 64(4), pages 1146-1154, December.
    18. Michael G. Hudgens & Peter B. Gilbert, 2009. "Assessing Vaccine Effects in Repeated Low-Dose Challenge Experiments," Biometrics, The International Biometric Society, vol. 65(4), pages 1223-1232, December.
    19. Dean Follmann & Chiung-Yu Huang, 2015. "Incorporating founder virus information in vaccine field trials," Biometrics, The International Biometric Society, vol. 71(2), pages 386-396, June.
    20. Follmann Dean & Fay Michael, 2012. "Bounds on the Effect of Vaccine Induced Immune Response on Outcome," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-19, January.
    21. Stephens Alisa & Joffe Marshall & Keele Luke, 2016. "Generalized Structural Mean Models for Evaluating Depression as a Post-treatment Effect Modifier of a Jobs Training Intervention," Journal of Causal Inference, De Gruyter, vol. 4(2), pages 1, September.
    22. Ying Huang & Peter B. Gilbert, 2011. "Comparing Biomarkers as Principal Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 67(4), pages 1442-1451, December.
    23. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    24. Ying Huang & Peter B. Gilbert & Julian Wolfson, 2013. "Design and Estimation for Evaluating Principal Surrogate Markers in Vaccine Trials," Biometrics, The International Biometric Society, vol. 69(2), pages 301-309, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Li & Constantine E. Frangakis, 2006. "Polydesigns and Causal Inference," Biometrics, The International Biometric Society, vol. 62(2), pages 343-351, June.
    2. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    3. Michael R. Elliott & Marshall M. Joffe & Zhen Chen, 2006. "A Potential Outcomes Approach to Developmental Toxicity Analyses," Biometrics, The International Biometric Society, vol. 62(2), pages 352-360, June.
    4. Gilbert Peter B. & Blette Bryan S. & Hudgens Michael G. & Shepherd Bryan E., 2020. "Post-randomization Biomarker Effect Modification Analysis in an HIV Vaccine Clinical Trial," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 54-69, January.
    5. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    6. Yannis Jemiai & Andrea Rotnitzky & Bryan E. Shepherd & Peter B. Gilbert, 2007. "Semiparametric estimation of treatment effects given base‐line covariates on an outcome measured after a post‐randomization event occurs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 879-901, November.
    7. Linbo Wang & Thomas S. Richardson & Xiao-Hua Zhou, 2017. "Causal analysis of ordinal treatments and binary outcomes under truncation by death," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 719-735, June.
    8. Dean Follmann & Michael P. Fay & Michael Proschan, 2009. "Chop-Lump Tests for Vaccine Trials," Biometrics, The International Biometric Society, vol. 65(3), pages 885-893, September.
    9. James Y. Dai & Peter B. Gilbert & Benoît R. Mâsse, 2012. "Partially Hidden Markov Model for Time-Varying Principal Stratification in HIV Prevention Trials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 52-65, March.
    10. Bryan E. Shepherd & Peter B. Gilbert & Charles T. Dupont, 2011. "Sensitivity Analyses Comparing Time-to-Event Outcomes Only Existing in a Subset Selected Postrandomization and Relaxing Monotonicity," Biometrics, The International Biometric Society, vol. 67(3), pages 1100-1110, September.
    11. Shanshan Luo & Wei Li & Yangbo He, 2023. "Causal inference with outcomes truncated by death in multiarm studies," Biometrics, The International Biometric Society, vol. 79(1), pages 502-513, March.
    12. Chiba Yasutaka, 2012. "The Large Sample Bounds on the Principal Strata Effect with Application to a Prostate Cancer Prevention Trial," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-19, May.
    13. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    14. Bryan E. Shepherd & Peter B. Gilbert & Yannis Jemiai & Andrea Rotnitzky, 2006. "Sensitivity Analyses Comparing Outcomes Only Existing in a Subset Selected Post-Randomization, Conditional on Covariates, with Application to HIV Vaccine Trials," Biometrics, The International Biometric Society, vol. 62(2), pages 332-342, June.
    15. Constantine E. Frangakis & Donald B. Rubin & Ming-Wen An & Ellen MacKenzie, 2007. "Principal Stratification Designs to Estimate Input Data Missing Due to Death," Biometrics, The International Biometric Society, vol. 63(3), pages 641-649, September.
    16. Sjolander Arvid & Vansteelandt Stijn & Humphreys Keith, 2010. "A Principal Stratification Approach to Assess the Differences in Prognosis between Cancers Caused by Hormone Replacement Therapy and by Other Factors," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-37, June.
    17. Roderick J. Little & Qi Long & Xihong Lin, 2009. "A Comparison of Methods for Estimating the Causal Effect of a Treatment in Randomized Clinical Trials Subject to Noncompliance," Biometrics, The International Biometric Society, vol. 65(2), pages 640-649, June.
    18. Ertefaie Ashkan & Small Dylan & Flory James & Hennessy Sean, 2016. "Selection Bias When Using Instrumental Variable Methods to Compare Two Treatments But More Than Two Treatments Are Available," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 219-232, May.
    19. Arvid Sjölander & Keith Humphreys & Stijn Vansteelandt & Rino Bellocco & Juni Palmgren, 2009. "Sensitivity Analysis for Principal Stratum Direct Effects, with an Application to a Study of Physical Activity and Coronary Heart Disease," Biometrics, The International Biometric Society, vol. 65(2), pages 514-520, June.
    20. Gilbert Peter B. & Hudgens Michael G. & Wolfson Julian, 2011. "Commentary on "Principal Stratification -- a Goal or a Tool?" by Judea Pearl," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1161-1169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.