IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i1p126-134.html
   My bibliography  Save this article

Tests for Independence between Marks and Points of a Marked Point Process

Author

Listed:
  • Yongtao Guan

Abstract

No abstract is available for this item.

Suggested Citation

  • Yongtao Guan, 2006. "Tests for Independence between Marks and Points of a Marked Point Process," Biometrics, The International Biometric Society, vol. 62(1), pages 126-134, March.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:126-134
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00395.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongtao Guan & Michael Sherman & James A. Calvin, 2004. "A Nonparametric Test for Spatial Isotropy Using Subsampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 810-821, January.
    2. Yosihiko Ogata, 1998. "Space-Time Point-Process Models for Earthquake Occurrences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(2), pages 379-402, June.
    3. Dimitris N. Politis & Michael Sherman, 2001. "Moment estimation for statistics from marked point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 261-275.
    4. Frederic Paik Schoenberg, 2004. "Testing Separability in Spatial-Temporal Marked Point Processes," Biometrics, The International Biometric Society, vol. 60(2), pages 471-481, June.
    5. Martin Schlather & Paulo J. Ribeiro & Peter J. Diggle, 2004. "Detecting dependence between marks and locations of marked point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 79-93, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lothar Heinrich & Stella Klein & Martin Moser, 2014. "Empirical Mark Covariance and Product Density Function of Stationary Marked Point Processes—A Survey on Asymptotic Results," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 283-293, June.
    2. Jiří Dvořák & Tomáš Mrkvička & Jorge Mateu & Jonatan A. González, 2022. "Nonparametric Testing of the Dependence Structure Among Points–Marks–Covariates in Spatial Point Patterns," International Statistical Review, International Statistical Institute, vol. 90(3), pages 592-621, December.
    3. Pawlas, Zbynek, 2009. "Empirical distributions in marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4194-4209, December.
    4. Yongtao Guan, 2011. "Bias-Corrected Variance Estimation and Hypothesis Testing for Spatial Point and Marked Point Processes Using Subsampling," Biometrics, The International Biometric Society, vol. 67(3), pages 926-936, September.
    5. Benjamin French & Patrick J. Heagerty, 2009. "Marginal Mark Regression Analysis of Recurrent Marked Point Process Data," Biometrics, The International Biometric Society, vol. 65(2), pages 415-422, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongtao Guan & Michael Sherman & James A. Calvin, 2006. "Assessing Isotropy for Spatial Point Processes," Biometrics, The International Biometric Society, vol. 62(1), pages 119-125, March.
    2. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    3. Zhang, Tonglin & Zhuang, Run, 2017. "Testing proportionality between the first-order intensity functions of spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 72-82.
    4. Xianyang Zhang & Bo Li & Xiaofeng Shao, 2014. "Self-normalization for Spatial Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 311-324, June.
    5. D. Gospodinov & V. Karakostas & E. Papadimitriou, 2015. "Seismicity rate modeling for prospective stochastic forecasting: the case of 2014 Kefalonia, Greece, seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1039-1058, November.
    6. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    7. Huang, Lorick & Khabou, Mahmoud, 2023. "Nonlinear Poisson autoregression and nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 201-241.
    8. Steffen Volkenand & Günther Filler & Martin Odening, 2020. "Price Discovery and Market Reflexivity in Agricultural Futures Contracts with Different Maturities," Risks, MDPI, vol. 8(3), pages 1-17, July.
    9. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    10. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    11. Kuroda, Kaori & Hashiguchi, Hiroki & Fujiwara, Kantaro & Ikeguchi, Tohru, 2014. "Reconstruction of network structures from marked point processes using multi-dimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 194-204.
    12. van den Hengel, G. & Franses, Ph.H.B.F., 2018. "Forecasting social conflicts in Africa using an Epidemic Type Aftershock Sequence model," Econometric Institute Research Papers EI2018-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    14. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    15. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    16. Hainaut, Donatien, 2019. "Fractional Hawkes processes," LIDAM Discussion Papers ISBA 2019016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Eric W. Fox & Martin B. Short & Frederic P. Schoenberg & Kathryn D. Coronges & Andrea L. Bertozzi, 2016. "Modeling E-mail Networks and Inferring Leadership Using Self-Exciting Point Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 564-584, April.
    18. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    19. Dyogo Lesniewski Ribeiro & Tamara Cantú Maltauro & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo & Gustavo Henrique Dalposso, 2024. "Directional Differences in Thematic Maps of Soil Chemical Attributes with Geometric Anisotropy," Stats, MDPI, vol. 7(1), pages 1-14, January.
    20. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Specification Testing in Hawkes Models," Journal of Financial Econometrics, Oxford University Press, vol. 15(1), pages 139-171.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:1:p:126-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.