Advanced Search
MyIDEAS: Login

Asymptotic Distributions of Unit-Root Tests When the Process Is Nearly Stationary

Contents:

Author Info

  • Pantula, Sastry G
Registered author(s):

    Abstract

    Several test criteria are available for testing the hypothesis that the autoregressive polynomial of an autoregressive moving average process has a single unit root. Schwert (1989), using a Monte Carlo study, investigated the performance of some of the available test criteria. He concluded that the actual levels of the test criteria considered in his study are far from the specified levels when the moving average polynomial also has a root close to 1. This article studies the asymptotic null distribution of the test statistics for testing "rho" = 1 in the model Y(" subscript" t) = "rho" Y("subscript" t-1) + e(" subscript" t) - "theta"e(" subscript" t-1) as "theta" approaches 1. It is shown that the test statistics differ from one another in their asymptotic properties depending on the rate at which "theta" converges to 1.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

    Volume (Year): 9 (1991)
    Issue (Month): 1 (January)
    Pages: 63-71

    as in new window
    Handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:63-71

    Contact details of provider:
    Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

    Order Information:
    Web: http://www.amstat.org/publications/index.html

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:9:y:1991:i:1:p:63-71. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.