Advanced Search
MyIDEAS: Login to save this article or follow this journal

Variable Selection for Model-Based Clustering

Contents:

Author Info

  • Raftery, Adrian E.
  • Dean, Nema
Registered author(s):

    Abstract

    No abstract is available for this item.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.ingentaconnect.com/content/asa/jasa/2006/00000101/00000473/art00019
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by American Statistical Association in its journal Journal of the American Statistical Association.

    Volume (Year): 101 (2006)
    Issue (Month): (March)
    Pages: 168-178

    as in new window
    Handle: RePEc:bes:jnlasa:v:101:y:2006:p:168-178

    Contact details of provider:
    Web page: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main

    Order Information:
    Web: http://www.amstat.org/publications/index.html

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Morris, Katherine & McNicholas, Paul D., 2013. "Dimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributions," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2088-2093.
    2. Crespo Cuaresma, Jesus & Doppelhofer, Gernot, 2007. "Nonlinearities in cross-country growth regressions: A Bayesian Averaging of Thresholds (BAT) approach," Journal of Macroeconomics, Elsevier, vol. 29(3), pages 541-554, September.
    3. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    4. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    5. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    6. Montanari, Angela & Viroli, Cinzia, 2011. "Maximum likelihood estimation of mixtures of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2712-2723, September.
    7. Golosnoy, Vasyl & Okhrin, Yarema, 2009. "Flexible shrinkage in portfolio selection," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 317-328, February.
    8. Chris Fraley & Adrian Raftery, . "Model-based Methods of Classification: Using the mclust Software in Chemometrics," Journal of Statistical Software, American Statistical Association, vol. 18(i06).
    9. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer, vol. 73(1), pages 125-144, March.
    10. Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer, vol. 62(1), pages 11-35, February.
    11. Katherine Morris & Paul McNicholas & Luca Scrucca, 2013. "Dimension reduction for model-based clustering via mixtures of multivariate $$t$$ t -distributions," Advances in Data Analysis and Classification, Springer, vol. 7(3), pages 321-338, September.
    12. Galimberti, Giuliano & Montanari, Angela & Viroli, Cinzia, 2009. "Penalized factor mixture analysis for variable selection in clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4301-4310, October.
    13. Charles Bouveyron & Camille Brunet-Saumard, 2014. "Discriminative variable selection for clustering with the sparse Fisher-EM algorithm," Computational Statistics, Springer, vol. 29(3), pages 489-513, June.
    14. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2009. "Variable selection in model-based clustering: A general variable role modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3872-3882, September.
    15. Tsai, Chieh-Yuan & Chiu, Chuang-Cheng, 2008. "Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4658-4672, June.
    16. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    17. Nema Dean & Rebecca Nugent, 2013. "Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas," Advances in Data Analysis and Classification, Springer, vol. 7(3), pages 339-357, September.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:101:y:2006:p:168-178. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.