Advanced Search
MyIDEAS: Login

Uncertainty and Economic Policy: Big Problems and Small Models

Contents:

Author Info

  • Ruben Mercado

    ()
    (United Nations Development Programme)

Registered author(s):

    Abstract

    This article presents an introduction to the main existing analytical results relating to problems of uncertainty and economic policy. It addresses specifically the question of “caution” versus “intensity” in the use of instruments of economic policy under uncertainty in dynamic contexts. That question can be illustrated simply as follows: How should the monetary authority act when faced with increasing uncertainty about the impact of its policy actions? The starting point is the assumption that the Central Bank can influence nominal or real economic variables, for example, using its monetary instruments. But depending on the degree of stability of the economic agents’ behavior, or depending on changes in technology or in the institutional structure, the effect of some policy actions may be more or less uncertain. Therefore, when this uncertainty is increased: Should the Central Bank use its instruments more cautiously or, conversely, to apply them with more intensity? This question is probably as old as the art of economic policy. However, its formal treatment began with the seminal paper of Brainard in the late 1960s, and continues today. In this article, and by using a sequence of small models but of growing complexity, I progressively introduce the main existing analytical results so far, I present comparative conclusions, and I suggest future research lines. The derivation of various results is presented in this work within a unified methodological framework using feedback rules, feedback gain coefficients and Riccati equations. This allows a better understanding of the analytic progression, and also provides a methodological basis that can be useful to obtain new results. First, I review results pertaining to deterministic problems, beginning with the classic Tinbergen result for static models and its redefinition in dynamic models. Secondly, I present the problem of “caution” versus “intensity” in problems with parametric uncertainty in a context of optimal control. I present the results of Chow for the case of current uncertainty; those of Craine for the case of future uncertainty; those of Mercado for the case that both types of uncertainty arise simultaneously; and those of Athans, Ku and Gershwin in relation to the “uncertainty threshold principle”. Thirdly, I present the problem of “caution” versus “intensity” in problems with model uncertainty in a context of robust control, and I introduce the results derived by Gonzalez and Rodriguez for the cases of current and future uncertainty. The main conclusion is that the results depend on the type of uncertainty (parametric or model uncertainty), the timing of the uncertainty (current or future), and the time horizon (finite or infinite). For optimal control with parametric uncertainty in the parameter associated with the policy variable, the optimal policy response is more cautious in the case of an increase in current uncertainty, while it becomes more intense in the case of an increase in future uncertainty. For an infinite horizon, caution prevails. Contrasting, in the case of robust control with model uncertainty, the optimal policy response becomes more and more intense as uncertainty increases, but beyond a certain level of uncertainty, the response changes of behavior and becomes more and more cautious. And also in contrast to the case of optimal control, this response is the same for both current and future uncertainty, as well as in the case of an infinite horizon. Most problems I dealt with in this article are of the linear quadratic form, with one target variable and one policy instrument, a standard formulation used to deal with them so far. In that sense, there are a number of scarcely explored lines of research that go beyond that formulation, such us: multivariate models, models with rational expectations, models with passive learning (using Kalman filters) or active learning (Dual control), and models with functional forms different from the linear quadratic one.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.bcra.gov.ar/pdfs/investigaciones/57-58_Mercado.pdf
    File Function: Spanish version (versión en Español)
    Download Restriction: no

    Bibliographic Info

    Article provided by Central Bank of Argentina, Economic Research Department in its journal Ensayos Económicos.

    Volume (Year): 1 (2010)
    Issue (Month): 57-58 (January - June)
    Pages: 33-57

    as in new window
    Handle: RePEc:bcr:ensayo:v:1:y:2010:i:57-58:p:33-57

    Contact details of provider:
    Postal: Reconquista 266 - C1003ABF - Buenos Aires
    Phone: (54-11) 4348-3582
    Fax: (54-11) 4000-1257
    Email:
    Web page: http://www.bcra.gov.ar
    More information through EDIRC

    Related research

    Keywords: macroeconomic policy; optimal control; robust control; uncertainty;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bcr:ensayo:v:1:y:2010:i:57-58:p:33-57. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Federico Grillo).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.