IDEAS home Printed from https://ideas.repec.org/a/baq/taprar/v5y2023i2p6-10.html
   My bibliography  Save this article

Enhancing accuracy of information processing in onboard subsystems of UAVs

Author

Listed:
  • Igor Zhukov

    (National Aviation University)

  • Bogdan Dolintse

    (SURGe Project)

Abstract

The object of research is the onboard subsystems of Unmanned Aerial Vehicles (UAVs). The research is aimed at analyzing UAVs, specifically the integration and enhancement of satellite-based positioning systems, including Global Navigation Satellite Systems (GNSS) and Inertial Navigation Systems (INS).The problem concerns traditional satellite-based positioning services, especially those relying solely on medium earth orbit (MEO) satellites, which are insufficient for specific requirements. The study aims to address the limitations of these systems on onboard subsystems of UAVs, especially in challenging environments laden with jammers and interference, and to provide a more accurate, robust, and continuous positioning solution.The research proposes a «multilayer system of systems» approach that integrates signals from various sources, including low Earth orbit (LEO) satellites, ground-based positioning, navigation, and timing (PNT) systems, and user-centric sensors. The combined approach, termed LeGNSS/INS, leverages the strengths of each component, providing redundancy and enhanced accuracy. The system's performance was evaluated using pseudo-real output data, demonstrating its ability to generate quasi-real dynamic trajectories for UAV flight. The error analysis showed that the proposed method consistently outperforms traditional GNSS systems, especially in challenging environments.The enhanced performance of the LeGNSS/INS system can be attributed to integrating multiple satellite systems with INS and applying optimal filtering techniques. The research also employed mathematical modeling to represent the dependencies and interactions when combining data from different sources, such as GPS, LEO, and INS. The Kalman filter is a mechanism to fuse data from multiple sources optimally.The insights from this study apply to various sectors, including aviation, maritime navigation, autonomous drones, and defense. The enhanced positioning accuracy can significantly improve safety, navigation precision, and operational efficiency. However, the study assumes idealized conditions for satellite signal reception, which might not always be accurate in real-world scenarios. Challenges, such as the martial law conditions in Ukraine affecting data collection and potential satellite signal restrictions, were also highlighted. Further research can delve into the impact of more complex environmental factors and the integration of additional satellite systems or sensors to enhance accuracy further.

Suggested Citation

  • Igor Zhukov & Bogdan Dolintse, 2023. "Enhancing accuracy of information processing in onboard subsystems of UAVs," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 5(2(73)), pages 6-10, October.
  • Handle: RePEc:baq:taprar:v:5:y:2023:i:2:p:6-10
    DOI: 10.15587/2706-5448.2023.287700
    as

    Download full text from publisher

    File URL: https://journals.uran.ua/tarp/article/download/287700/283391
    Download Restriction: no

    File URL: https://libkey.io/10.15587/2706-5448.2023.287700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:baq:taprar:v:5:y:2023:i:2:p:6-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iryna Prudius (email available below). General contact details of provider: https://journals.uran.ua/tarp/issue/archive .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.