IDEAS home Printed from https://ideas.repec.org/a/aen/eeepjl/eeep11-1-mignone.html
   My bibliography  Save this article

Relative Cost-Effectiveness of Electricity and Transportation Policies as a Means to Reduce CO2 Emissions in the United States: A Multi-Model Assessment

Author

Listed:
  • Bryan K. Mignone, Matthew Binsted, Maxwell Brown, Darek Imadi, Haewon McJeon, Matthew Mowers, Sharon Showalter, Daniel C. Steinberg, and Frances Wood

Abstract

Two common energy policy instruments in the United States are tax incentives and technology standards. Although these instruments have been shown to be less cost-effective as a means to reduce CO2 emissions than direct emissions pricing mechanisms, it can be challenging to compare the CO2 emissions reduction costs of such policies across sectors, given the wide range in estimates for any given policy and inconsistencies in how such estimates are constructed across studies. This study addresses this analytical gap by simultaneously comparing the cost-effectiveness of policies across the electricity and transportation sectors using three publicly available US energy system models (EM-NEMS, ReEDS, and GCAM-USA). Four policies are explicitly compared: wind and solar tax credits, a renewable portfolio standard (RPS), a renewable fuel standard (RFS), and an electric vehicle (EV) tax credit. An economy-wide carbon tax is used as a benchmark for cost-effectiveness. Results from this study confirm prior insights about the cost-effectiveness of economy-wide carbon pricing relative to sectoral instruments but also reveal several novel insights about particular sectoral policies. Specifically, this study finds that (1) current electricity tax incentives provide uneven support for wind and solar technologies, (2) despite known inefficiencies, renewable energy policies in the electricity sector are less expensive than earlier estimates due to technology advancement and changes in market conditions, (3) within transportation, an expanded RFS with increasing advanced biofuel targets is more cost-effective than an EV tax credit extension under plausible assumptions, (4) EV incentives lead to a rebound in conventional vehicle fuel economy that further erodes cost-effectiveness, and (5) the change in policy costs over time is not known a priori, but the relative cost ordering among these policies does not depend on the timeframe of analysis. These results are largely robust to the underlying modeling framework, increasing the confidence with which they can be applied to climate policy evaluation.

Suggested Citation

  • Bryan K. Mignone, Matthew Binsted, Maxwell Brown, Darek Imadi, Haewon McJeon, Matthew Mowers, Sharon Showalter, Daniel C. Steinberg, and Frances Wood, 2022. "Relative Cost-Effectiveness of Electricity and Transportation Policies as a Means to Reduce CO2 Emissions in the United States: A Multi-Model Assessment," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:eeepjl:eeep11-1-mignone
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/eeeparticle.aspx?id=409
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:eeepjl:eeep11-1-mignone. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.