IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v10y2021i5p11-24.html
   My bibliography  Save this article

SHMP as Antiscalant for Treating Brackish Water using Reverse Osmosis

Author

Listed:
  • Mohammed Saleh Al Ansari

Abstract

One of the most genuine issues found in desalination utilizing reverse osmosis (RO) is concentrate or administration of brine. This concentrate can be utilized as a raw material for production of minerals. The antiscalants present in the RO handle ought to be removed after the process of salt crystallization. The precipitation of the amount of sulfate and carbonate from calcium can be modulated by the antiscalants in the process of reverse osmosis. However, the modulation of calcium phosphate has not been highlighted in literature. This gap in the literature instigated us to explore the activity of the antiscalants in the scaling of calcium phosphate in the RO blocks by a mild method. Nowadays, most RO desalination plants are utilizing phosphorus-based antiscalants to prevent scaling and to realize tall layer execution, as measured by diminished transmembrane weight, salt entry, and expanded saturate stream. In any case, phosphorus antiscalants in brine disposal can be an natural issue that ought to be considered and considered when introducing a desalination plant. Sodium Hexametaphosphate (SHMP) is reckoned excellent antiscalant agent which utilizes to deal with scaling in RO films. The sodium hexametaphosphate solution is prepared by mixing in sodium hexametaphosphate vessel and dosed to the feed water through. However, the apparatus containing sodium hexametaphosphate was highly prone to contamination by bacteria. The amount of bacteria within the apparatus after 36 days of makeup was far too high to be analysed as it reached a value of beyond Too Numerous To Count (TNTC). The polyphosphate can be transformed into orthophosphate in presence of sodium hexametaphosphate solution. The conversion is influenced by parameters like temperature, concentration and different nutrients responsible for the growth of microbes. Thus a study was conducted for the detection of free phosphate in a solution of sodium hexametaphosphate. Since hydrogen sulfide (H2S) can be generated in raw water, the use of chlorine was averted completely. The tanks and injection lines containing sodium hexametaphosphate solution was disinfected using sodium metabisulfite (SBS). The optimum concentration of sodium metabisulphate solution required for sterilization along with reducing the formation of the free phosphate was studied. The reaction of the SBS in the apparatus containing sodium hexametaphosphate solution was studied. Furthermore the interaction between the SBS with the sodium hexametaphosphate solution in connection with the Microguard Filter (MGF) influencing the efficacy and output of the RO system was studied.

Suggested Citation

  • Mohammed Saleh Al Ansari, 2021. "SHMP as Antiscalant for Treating Brackish Water using Reverse Osmosis," International Journal of Sciences, Office ijSciences, vol. 10(05), pages 11-24, May.
  • Handle: RePEc:adm:journl:v:10:y:2021:i:5:p:11-24
    DOI: 10.18483/ijSci.2470
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/2470
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V102021052470.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.2470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:10:y:2021:i:5:p:11-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.