IDEAS home Printed from https://ideas.repec.org/a/abf/journl/v20y2019i1p14809-14812.html
   My bibliography  Save this article

The Application of Next Generation Sequencing in Cancer Precision Diagnosis and Target Therapy Selection

Author

Listed:
  • Tingting Lin

    (Department of Pharmacy, Zhongshan Hospital FuDan University, China)

  • Peng Lyu

    (College of Biological Science and Technology, Fuzhou University, China)

Abstract

Cancer comprises more than 100 distinct human malignancies and is highly heterogeneous in its genetic and molecular aspects...

Suggested Citation

  • Tingting Lin & Peng Lyu, 2019. "The Application of Next Generation Sequencing in Cancer Precision Diagnosis and Target Therapy Selection," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 20(1), pages 14809-14812, July.
  • Handle: RePEc:abf:journl:v:20:y:2019:i:1:p:14809-14812
    DOI: 10.26717/BJSTR.2019.20.003405
    as

    Download full text from publisher

    File URL: https://biomedres.us/pdfs/BJSTR.MS.ID.003405.pdf
    Download Restriction: no

    File URL: https://biomedres.us/fulltexts/BJSTR.MS.ID.003405.php
    Download Restriction: no

    File URL: https://libkey.io/10.26717/BJSTR.2019.20.003405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael R. Stratton & Peter J. Campbell & P. Andrew Futreal, 2009. "The cancer genome," Nature, Nature, vol. 458(7239), pages 719-724, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ronglai Shen & Qianxing Mo & Nikolaus Schultz & Venkatraman E Seshan & Adam B Olshen & Jason Huse & Marc Ladanyi & Chris Sander, 2012. "Integrative Subtype Discovery in Glioblastoma Using iCluster," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
    2. van Wieringen Wessel N. & van de Wiel Mark A., 2014. "Penalized differential pathway analysis of integrative oncogenomics studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(2), pages 141-158, April.
    3. Michael Mak & Cynthia A Reinhart-King & David Erickson, 2011. "Microfabricated Physical Spatial Gradients for Investigating Cell Migration and Invasion Dynamics," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-8, June.
    4. Yi-Yu Chen & Jing-Yu Ge & Si-Yuan Zhu & Zhi-Ming Shao & Ke-Da Yu, 2022. "Copy number amplification of ENSA promotes the progression of triple-negative breast cancer via cholesterol biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Tommaso Rondelli & Margherita Berardi & Benedetta Peruzzi & Luca Boni & Roberto Caporale & Piero Dolara & Rosario Notaro & Lucio Luzzatto, 2013. "The Frequency of Granulocytes with Spontaneous Somatic Mutations: A Wide Distribution in a Normal Human Population," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    6. Manako Yamaguchi & Hirofumi Nakaoka & Kazuaki Suda & Kosuke Yoshihara & Tatsuya Ishiguro & Nozomi Yachida & Kyota Saito & Haruka Ueda & Kentaro Sugino & Yutaro Mori & Kaoru Yamawaki & Ryo Tamura & Sun, 2022. "Spatiotemporal dynamics of clonal selection and diversification in normal endometrial epithelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Yukinari Haraoka & Yuki Akieda & Yuri Nagai & Chihiro Mogi & Tohru Ishitani, 2022. "Zebrafish imaging reveals TP53 mutation switching oncogene-induced senescence from suppressor to driver in primary tumorigenesis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Eva G. Álvarez & Jonas Demeulemeester & Paula Otero & Clemency Jolly & Daniel García-Souto & Ana Pequeño-Valtierra & Jorge Zamora & Marta Tojo & Javier Temes & Adrian Baez-Ortega & Bernardo Rodriguez-, 2021. "Aberrant integration of Hepatitis B virus DNA promotes major restructuring of human hepatocellular carcinoma genome architecture," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abf:journl:v:20:y:2019:i:1:p:14809-14812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Roy (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.